Davide Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5137527/publications.pdf Version: 2024-02-01

DAVIDE FEDDADI

#	Article	IF	CITATIONS
1	Editorial: Purinergic Signaling and Inflammation. Frontiers in Immunology, 2021, 12, 699069.	4.8	4
2	Alzheimer and Purinergic Signaling: Just a Matter of Inflammation?. Cells, 2021, 10, 1267.	4.1	15
3	Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 9449.	4.1	16
4	Eosinophils and Purinergic Signaling in Health and Disease. Frontiers in Immunology, 2020, 11, 1339.	4.8	11
5	Purinergic Signaling in Controlling Macrophage and T Cell Functions During Atherosclerosis Development. Frontiers in Immunology, 2020, 11, 617804.	4.8	12
6	Purinergic Signaling: A New Pharmacological Target Against Viruses?. Trends in Pharmacological Sciences, 2018, 39, 926-936.	8.7	18
7	Cytokine-Induced Killer Cells Express CD39, CD38, CD203a, CD73 Ectoenzymes and P1 Adenosinergic Receptors. Frontiers in Pharmacology, 2018, 9, 196.	3.5	15
8	A Purinergic Trail for Metastases. Trends in Pharmacological Sciences, 2017, 38, 277-290.	8.7	28
9	Roles and Modalities of Ectonucleotidases in Remodeling the Multiple Myeloma Niche. Frontiers in Immunology, 2017, 8, 305.	4.8	52
10	P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis. Frontiers in Immunology, 2017, 8, 1028.	4.8	27
11	Differential Effects of Angelicin Analogues on NF- <i>κ</i> B Activity and IL-8 Gene Expression in Cystic Fibrosis IB3-1 Cells. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	16
12	Analytic and Dynamic Secretory Profile of Patient-Derived Cytokine-Induced Killer Cells. Molecular Medicine, 2017, 23, 235-246.	4.4	9
13	The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease. Oncotarget, 2017, 8, 35962-35972.	1.8	28
14	Purinergic Signaling During Immune Cell Trafficking. Trends in Immunology, 2016, 37, 399-411.	6.8	64
15	Anti-CD73 immunotherapy: A viable way to reprogram the tumor microenvironment. Oncolmmunology, 2016, 5, e1216292.	4.6	42
16	MicroRNAs Modulate the Purinergic Signaling Network. Trends in Molecular Medicine, 2016, 22, 905-918.	6.7	29
17	Purinergic signaling in scarring. FASEB Journal, 2016, 30, 3-12.	0.5	65
18	Purinergic signaling in atherosclerosis. Trends in Molecular Medicine, 2015, 21, 184-192.	6.7	35

Davide Ferrari

#	Article	IF	CITATIONS
19	Extracellular nucleotide and nucleoside signaling in vascular and blood disease. Blood, 2014, 124, 1029-1037.	1.4	119
20	Nucleotide signalling during inflammation. Nature, 2014, 509, 310-317.	27.8	750
21	Microvascular inflammation in atherosclerosis. IJC Metabolic & Endocrine, 2014, 3, 1-7.	0.5	22
22	Extracellular Purines Promote the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to the Osteogenic and Adipogenic Lineages. Stem Cells and Development, 2013, 22, 1097-1111.	2.1	95
23	Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice. Blood, 2012, 119, 217-226.	1.4	52
24	Extracellular ATP Exerts Opposite Effects on Activated and Regulatory CD4+ T Cells via Purinergic P2 Receptor Activation. Journal of Immunology, 2012, 189, 1303-1310.	0.8	121
25	ILâ€18 associates to microvesicles shed from human macrophages by a LPS/TLRâ€4 independent mechanism in response to P2X receptor stimulation. European Journal of Immunology, 2012, 42, 3334-3345.	2.9	65
26	AMP Affects Intracellular Ca2+ Signaling, Migration, Cytokine Secretion and T Cell Priming Capacity of Dendritic Cells. PLoS ONE, 2012, 7, e37560.	2.5	9
27	The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood, 2012, 120, 2365-2375.	1.4	83
28	Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Experimental Hematology, 2011, 39, 360-374.e5.	0.4	73
29	Purinergic Receptor Type 6 Contributes to Airway Inflammation and Remodeling in Experimental Allergic Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 215-223.	5.6	85
30	P2X ₇ Receptor Signaling in the Pathogenesis of Smoke-Induced Lung Inflammation and Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 423-429.	2.9	130
31	A Potential Role for P2X ₇ R in Allergic Airway Inflammation in Mice and Humans. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 456-464.	2.9	129
32	ATP secreted by endothelial cells blocks CX3CL1-elicited natural killer cell chemotaxis and cytotoxicity via P2Y11 receptor activation. Blood, 2010, 116, 4492-4500.	1.4	49
33	Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nature Medicine, 2010, 16, 1434-1438.	30.7	376
34	Extracellular Adenosine Triphosphate and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 928-934.	5.6	174
35	Purinergic Receptor Inhibition Prevents the Development of Smoke-Induced Lung Injury and Emphysema. Journal of Immunology, 2010, 185, 688-697.	0.8	119
36	Functional and structural alterations in the endoplasmic reticulum and mitochondria during apoptosis triggered by C2-ceramide and CD95/APO-1/FAS receptor stimulation. Biochemical and Biophysical Research Communications, 2010, 391, 575-581.	2.1	17

DAVIDE FERRARI

#	Article	IF	CITATIONS
37	The Inflammation Signaling Molecule ATP Regulates Human CD4+ T Cell Functions. Blood, 2010, 116, 3901-3901.	1.4	0
38	Purinergic Stimulation of Human Bone Marrow-Derived Mesenchymal Stem Cells Modulate Their Function and Differentiation Potential Blood, 2010, 116, 3848-3848.	1.4	0
39	5-Hydroxytryptamine Modulates Migration, Cytokine and Chemokine Release and T-Cell Priming Capacity of Dendritic Cells In Vitro and In Vivo. PLoS ONE, 2009, 4, e6453.	2.5	137
40	Activation of Microglia by Amyloid β Requires P2X7 Receptor Expression. Journal of Immunology, 2009, 182, 4378-4385.	0.8	256
41	Extracellular ATP Acting at the P2X7 Receptor Inhibits Secretion of Soluble HLA-G from Human Monocytes. Journal of Immunology, 2009, 183, 4302-4311.	0.8	34
42	P2X7: a growth-promoting receptor—implications for cancer. Purinergic Signalling, 2009, 5, 251-256.	2.2	124
43	Structural Comparison of Crystal and Solution States of the 138 kDa Complex of Methylamine Dehydrogenase and Amicyanin fromParacoccus versutusâ€. Biochemistry, 2008, 47, 6560-6570.	2.5	8
44	Increased P2X7 Receptor Expression and Function in Thyroid Papillary Cancer: A New Potential Marker of the Disease?. Endocrinology, 2008, 149, 389-396.	2.8	123
45	Activation of Human Alveolar Macrophages via P2 Receptors: Coupling to Intracellular Ca2+ Increases and Cytokine Secretion. Journal of Immunology, 2008, 181, 2181-2188.	0.8	57
46	Stimulation of P2 (P2X 7) receptors in human dendritic cells induces the release of tissue factorâ€bearing microparticles. FASEB Journal, 2007, 21, 1926-1933.	0.5	87
47	Increased sensitivity to extracellular ATP of fibroblasts from patients affected by systemic sclerosis. Annals of the Rheumatic Diseases, 2007, 66, 1124-1125.	0.9	9
48	Stimulation of P2 receptors causes release of IL-1β–loaded microvesicles from human dendritic cells. Blood, 2007, 109, 3856-3864.	1.4	229
49	The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood, 2007, 109, 533-542.	1.4	93
50	Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Medicine, 2007, 13, 913-919.	30.7	559
51	Stimulation of Purinergic Receptors Modulates Chemokine Expression in Human Keratinocytes. Journal of Investigative Dermatology, 2007, 127, 660-667.	0.7	51
52	Shaping immune responses through the activation of dendritic cells–P2 receptors. Purinergic Signalling, 2007, 3, 99-107.	2.2	18
53	Crystal Structure of an Electron Transfer Complex between Aromatic Amine Dehydrogenase and Azurin from Alcaligenes faecalis,. Biochemistry, 2006, 45, 13500-13510.	2.5	34
54	A role for P2X7in microglial proliferation. Journal of Neurochemistry, 2006, 99, 745-758.	3.9	127

DAVIDE FERRARI

#	Article	IF	CITATIONS
55	Activation of human eosinophils via P2 receptors: novel findings and future perspectives. Journal of Leukocyte Biology, 2006, 79, 7-15.	3.3	27
56	The P2X7 Receptor: A Key Player in IL-1 Processing and Release. Journal of Immunology, 2006, 176, 3877-3883.	0.8	949
57	P2X7 receptor: Death or life?. Purinergic Signalling, 2005, 1, 219-227.	2.2	126
58	5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. International Immunology, 2005, 17, 599-606.	4.0	171
59	Extracellular Adenosine 5′-Triphosphate Modulates Interleukin-6 Production by Human Thyrocytes through Functional Purinergic P2 Receptors. Endocrinology, 2005, 146, 3172-3178.	2.8	21
60	Basal Activation of the P2X7 ATP Receptor Elevates Mitochondrial Calcium and Potential, Increases Cellular ATP Levels, and Promotes Serum-independent Growth. Molecular Biology of the Cell, 2005, 16, 3260-3272.	2.1	242
61	The P2Y14 Receptor of Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 601-609.	2.9	90
62	The Antibiotic Polymyxin B Modulates P2X7 Receptor Function. Journal of Immunology, 2004, 173, 4652-4660.	0.8	79
63	The Serotoninergic Receptors of Human Dendritic Cells: Identification and Coupling to Cytokine Release. Journal of Immunology, 2004, 172, 6011-6019.	0.8	190
64	Venous Leg Ulcers And Apoptosis: A TIMP-3-Mediated Pathway?. Journal of Investigative Dermatology, 2004, 123, 1210-1212.	0.7	2
65	Electron transfer in crystals of the binary and ternary complexes of methylamine dehydrogenase with amicyanin and cytochrome c551i as detected by EPR spectroscopy. Journal of Biological Inorganic Chemistry, 2004, 9, 231-237.	2.6	14
66	Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood, 2004, 104, 1662-1670.	1.4	111
67	Extracellular ATP, P2 receptors, and inflammation. Drug Development Research, 2003, 59, 171-174.	2.9	15
68	Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. British Journal of Pharmacology, 2003, 138, 1244-1250.	5.4	68
69	Calcium and apoptosis: facts and hypotheses. Oncogene, 2003, 22, 8619-8627.	5.9	439
70	Catalysis and electron transfer in protein crystals: the binary and ternary complexes of methylamine dehydrogenase with electron acceptors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1647, 337-342.	2.3	14
71	Extracellular ATP Causes ROCK I-dependent Bleb Formation in P2X7-transfected HEK293 Cells. Molecular Biology of the Cell, 2003, 14, 2655-2664.	2.1	124
72	Caspase-dependent Alterations of Ca2+ Signaling in the Induction of Apoptosis by Hepatitis B Virus X Protein. Journal of Biological Chemistry, 2003, 278, 31745-31755.	3.4	94

DAVIDE FERRARI

#	Article	IF	CITATIONS
73	Alerting and tuning the immune response by extracellular nucleotides. Journal of Leukocyte Biology, 2003, 73, 339-343.	3.3	184
74	The Influence of Lysophosphatidic Acid on the Functions of Human Dendritic Cells. Journal of Immunology, 2002, 169, 4129-4135.	0.8	87
75	Activation and Caspase-mediated Inhibition of PARP: A Molecular Switch between Fibroblast Necrosis and Apoptosis in Death Receptor Signaling. Molecular Biology of the Cell, 2002, 13, 978-988.	2.1	434
76	Sphingosine 1â€phosphate induces Chemotaxis of immature dendritic cells and modulates cytokineâ€release in mature human dendritic cells for emergence of Th2 immune responses. FASEB Journal, 2002, 16, 625-627.	0.5	177
77	Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin–sensitive P2y receptors. Blood, 2002, 100, 925-932.	1.4	144
78	Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood, 2002, 99, 1715-1722.	1.4	115
79	Expression and function of histamine receptors in human monocyte-derived dendritic cells. Journal of Allergy and Clinical Immunology, 2002, 109, 839-846.	2.9	135
80	A role for calcium in Bcl-2 action?. Biochimie, 2002, 84, 195-201.	2.6	46
81	Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 2001, 97, 587-600.	1.4	645
82	Extracellular ATP activates transcription factor NFAT in mouse microglial cells. Drug Development Research, 2001, 52, 213-219.	2.9	1
83	Molecular machinery and signaling events in apoptosis. Drug Development Research, 2001, 52, 558-570.	2.9	19
84	Proapoptotic plasma membrane pore: P2X7 receptor. Drug Development Research, 2001, 52, 571-578.	2.9	11
85	Functional characterization of P2Y and P2X receptors in human eosinophils. Journal of Cellular Physiology, 2001, 188, 329-336.	4.1	35
86	Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. British Journal of Pharmacology, 2001, 134, 116-126.	5.4	100
87	Extracellular ATP Induces a Distorted Maturation of Dendritic Cells and Inhibits Their Capacity to Initiate Th1 Responses. Journal of Immunology, 2001, 166, 1611-1617.	0.8	199
88	Adenosine triphosphate–induced oxygen radical production and CD11b up-regulation: Ca++ mobilization and actin reorganization in human eosinophils. Blood, 2000, 95, 973-978.	1.4	79
89	Reduced Loading of Intracellular Ca2+ Stores and Downregulation of Capacitative Ca2+Influx in Bcl-2–Overexpressing Cells. Journal of Cell Biology, 2000, 148, 857-862.	5.2	435
90	The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB Journal, 2000, 14, 2466-2476.	0.5	149

Davide Ferrari

#	Article	IF	CITATIONS
91	P2X ₇ Receptor and Polykarion Formation. Molecular Biology of the Cell, 2000, 11, 3169-3176.	2.1	61
92	P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Letters, 2000, 486, 217-224.	2.8	65
93	P2X7/P2Z Purinoreceptor-mediated Activation of Transcription Factor NFAT in Microglial Cells. Journal of Biological Chemistry, 1999, 274, 13205-13210.	3.4	144
94	P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Letters, 1999, 447, 71-75.	2.8	259
95	ATP receptors and giant cell formation. Journal of Leukocyte Biology, 1999, 66, 723-726.	3.3	42
96	Cytolytic P2X purinoceptors. Cell Death and Differentiation, 1998, 5, 191-199.	11.2	243
97	Apoptosis signaling by death receptors. FEBS Journal, 1998, 254, 439-459.	0.2	847
98	Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Letters, 1998, 429, 67-72.	2.8	124
99	Differential Regulation and ATP Requirement for Caspase-8 and Caspase-3 Activation during CD95- and Anticancer Drug–induced Apoptosis. Journal of Experimental Medicine, 1998, 188, 979-984.	8.5	198
100	Purinergic Modulation of Interleukin-1β Release from Microglial Cells Stimulated with Bacterial Endotoxin. Journal of Experimental Medicine, 1997, 185, 579-582.	8.5	457
101	Spontaneous Cell Fusion in Macrophage Cultures Expressing High Levels of the P2Z/P2X7 Receptor. Journal of Cell Biology, 1997, 138, 697-706.	5.2	160
102	Extracellular ATP Activates Transcription Factor NF-κB through the P2Z Purinoreceptor by Selectively Targeting NF-κB p65 (RelA). Journal of Cell Biology, 1997, 139, 1635-1643.	5.2	273
103	ATP-mediated cytotoxicity in microglial cells. Neuropharmacology, 1997, 36, 1295-1301.	4.1	269
104	Role of the Purinergic P2Z Receptor in Spontaneous Cell Death in J774 Macrophage Cultures. Biochemical and Biophysical Research Communications, 1996, 218, 176-181.	2.1	68
105	ROLE OF PURINERGIC RECEPTORS IN CELL DEATH AND CYTOKINE RELEASE IN THE IMMUNE SYSTEM. Biochemical Society Transactions, 1996, 24, 560S-560S.	3.4	0
106	Purinoceptor function in the immune system. Drug Development Research, 1996, 39, 319-329.	2.9	43
107	P2 Purinoceptors in the Immune System. Novartis Foundation Symposium, 1996, 198, 290-308.	1.1	28
108	Activation of microglial cells by β-amyloid protein and interferon-γ. Nature, 1995, 374, 647-650.	27.8	1,312

#	Article	IF	CITATIONS
109	Shaping immune responses through the activation of dendritic cells' P2 receptors. Purinergic Signalling, 0, , .	2.2	0
110	The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2. Frontiers in Immunology, 0, 13, .	4.8	3