## BalÃ;zs Gereben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5137492/publications.pdf Version: 2024-02-01



RALÃ:75 CEDEREN

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biochemistry, Cellular and Molecular Biology, and Physiological Roles of the Iodothyronine<br>Selenodeiodinases. Endocrine Reviews, 2002, 23, 38-89.                                                                     | 20.1 | 1,516     |
| 2  | Cellular and Molecular Basis of Deiodinase-Regulated Thyroid Hormone Signaling1. Endocrine<br>Reviews, 2008, 29, 898-938.                                                                                                | 20.1 | 714       |
| 3  | The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nature Cell Biology, 2005, 7, 698-705.                                    | 10.3 | 203       |
| 4  | American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models. Thyroid, 2014, 24, 88-168.                                                                             | 4.5  | 173       |
| 5  | Lipopolysaccharide Induces Type 2 Iodothyronine Deiodinase in the Mediobasal Hypothalamus:<br>Implications for the Nonthyroidal Illness Syndrome. Endocrinology, 2004, 145, 1649-1655.                                   | 2.8  | 166       |
| 6  | Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocrine Reviews, 2019, 40, 1000-1047.                                                                                                                       | 20.1 | 162       |
| 7  | Selective Proteolysis of Human Type 2 Deiodinase: A Novel Ubiquitin-Proteasomal Mediated Mechanism for Regulation of Hormone Activation. Molecular Endocrinology, 2000, 14, 1697-1708.                                   | 3.7  | 140       |
| 8  | Paracrine signaling by glial cell–derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. Journal of Clinical Investigation, 2010, 120, 2206-2217.                              | 8.2  | 133       |
| 9  | Deubiquitination of type 2 iodothyronine deiodinase by von Hippel–Lindau protein–interacting<br>deubiquitinating enzymes regulates thyroid hormone activation. Journal of Clinical Investigation,<br>2003, 112, 189-196. | 8.2  | 121       |
| 10 | Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nature Reviews<br>Endocrinology, 2015, 11, 642-652.                                                                                                | 9.6  | 117       |
| 11 | Characterization of the 5′-Flanking and 5′-Untranslated Regions of the Cyclic Adenosine<br>3′,5′-Monophosphate-Responsive Human Type 2 lodothyronine Deiodinase Gene1. Endocrinology, 2000,<br>141, 229-237.             | 2.8  | 101       |
| 12 | Ubiquitination-Induced Conformational Change within the Deiodinase Dimer Is a Switch Regulating<br>Enzyme Activity. Molecular and Cellular Biology, 2007, 27, 4774-4783.                                                 | 2.3  | 96        |
| 13 | Chronic Activation of $\hat{I}^32$ AMPK Induces Obesity and Reduces $\hat{I}^2$ Cell Function. Cell Metabolism, 2016, 23, 821-836.                                                                                       | 16.2 | 87        |
| 14 | Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. Journal of Clinical<br>Investigation, 2018, 129, 230-245.                                                                               | 8.2  | 75        |
| 15 | The E3 Ubiquitin Ligase TEB4 Mediates Degradation of Type 2 Iodothyronine Deiodinase. Molecular and<br>Cellular Biology, 2009, 29, 5339-5347.                                                                            | 2.3  | 73        |
| 16 | Cloning and Expression of the Chicken Type 2 Iodothyronine 5′-Deiodinase. Journal of Biological<br>Chemistry, 1999, 274, 13768-13776.                                                                                    | 3.4  | 70        |
| 17 | Characterization of the Nuclear Factor-ήB Responsiveness of the Human dio2 Gene. Endocrinology, 2006, 147, 4419-4429.                                                                                                    | 2.8  | 67        |
| 18 | Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain. ELife, 2017, 6, .                                                                                | 6.0  | 58        |

BalÃizs Gereben

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Neuronal Hypoxia Induces Hsp40-Mediated Nuclear Import of Type 3 Deiodinase As an Adaptive<br>Mechanism to Reduce Cellular Metabolism. Journal of Neuroscience, 2012, 32, 8491-8500.                                           | 3.6 | 57        |
| 20 | Ubc6p and Ubc7p Are Required for Normal and Substrate-Induced Endoplasmic Reticulum-Associated<br>Degradation of the Human Selenoprotein Type 2 lodothyronine Monodeiodinase. Molecular<br>Endocrinology, 2002, 16, 1999-2007. | 3.7 | 56        |
| 21 | The mRNA Structure Has Potent Regulatory Effects on Type 2 Iodothyronine Deiodinase Expression.<br>Molecular Endocrinology, 2002, 16, 1667-1679.                                                                               | 3.7 | 48        |
| 22 | Thyroid Hormone and the Neuroglia: Both Source and Target. Journal of Thyroid Research, 2011, 2011, 1-16.                                                                                                                      | 1.3 | 47        |
| 23 | Metabolic Instability of Type 2 Deiodinase Is Transferable To Stable Proteins Independently of<br>Subcellular Localization. Journal of Biological Chemistry, 2006, 281, 31538-31543.                                           | 3.4 | 44        |
| 24 | A Novel Pathway Regulates Thyroid Hormone Availability in Rat and Human Hypothalamic<br>Neurosecretory Neurons. PLoS ONE, 2012, 7, e37860.                                                                                     | 2.5 | 42        |
| 25 | Pretranslational Regulation of Type 2 Deiodinase. Thyroid, 2005, 15, 855-864.                                                                                                                                                  | 4.5 | 38        |
| 26 | Characterization of the 5'-Flanking and 5'-Untranslated Regions of the Cyclic Adenosine<br>3',5'-Monophosphate-Responsive Human Type 2 Iodothyronine Deiodinase Gene. Endocrinology, 2000,<br>141, 229-237.                    | 2.8 | 38        |
| 27 | Thyroid hormone activation by typeÂ2 deiodinase mediates exerciseâ€induced peroxisome<br>proliferatorâ€activated receptorâ€Î³ coactivatorâ€Iα expression in skeletal muscle. Journal of Physiology,<br>2016, 594, 5255-5269.   | 2.9 | 37        |
| 28 | Ontogenic Redistribution of Type 2 Deiodinase Messenger Ribonucleic Acid in the Brain of Chicken.<br>Endocrinology, 2004, 145, 3619-3625.                                                                                      | 2.8 | 36        |
| 29 | Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14018-14023.    | 7.1 | 34        |
| 30 | Endotoxin-induced inflammation down-regulates l-type amino acid transporter 1 (LAT1) expression at the blood–brain barrier of male rats and mice. Fluids and Barriers of the CNS, 2015, 12, 21.                                | 5.0 | 31        |
| 31 | Expression Patterns of WSB-1 and USP-33 Underlie Cell-Specific Posttranslational Control of Type 2<br>Deiodinase in the Rat Brain. Endocrinology, 2007, 148, 4865-4874.                                                        | 2.8 | 30        |
| 32 | Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the<br>Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice. Endocrinology, 2016, 157,<br>2356-2366.                               | 2.8 | 23        |
| 33 | The Foxo1-Inducible Transcriptional Repressor Zfp125 Causes Hepatic Steatosis and Hypercholesterolemia. Cell Reports, 2018, 22, 523-534.                                                                                       | 6.4 | 21        |
| 34 | Variable proopiomelanocortin expression in tanycytes of the adult rat hypothalamus and pituitary stalk. Journal of Comparative Neurology, 2017, 525, 411-441.                                                                  | 1.6 | 20        |
| 35 | Distribution and ultrastructural localization of the glucagon-like peptide-1 receptor (GLP-1R) in the rat brain. Brain Structure and Function, 2021, 226, 225-245.                                                             | 2.3 | 20        |
| 36 | A Glial-Neuronal Circuit in the Median Eminence Regulates Thyrotropin-Releasing Hormone-Release via the Endocannabinoid System. IScience, 2020, 23, 100921.                                                                    | 4.1 | 18        |

BalÃizs Gereben

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Transgenic Mouse Model for Detection of Tissue-Specific Thyroid Hormone Action. Endocrinology, 2018, 159, 1159-1171.                                                                                                                      | 2.8 | 14        |
| 38 | Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not<br>Impair Muscle Function. Thyroid, 2017, 27, 577-586.                                                                                        | 4.5 | 11        |
| 39 | A unique haplotype of RCCX copy number variation: from the clinics of congenital adrenal hyperplasia<br>to evolutionary genetics. European Journal of Human Genetics, 2017, 25, 702-710.                                                    | 2.8 | 10        |
| 40 | Hepatic Inactivation of the Type 2 Deiodinase Confers Resistance to Alcoholic Liver Steatosis.<br>Alcoholism: Clinical and Experimental Research, 2019, 43, 1376-1383.                                                                      | 2.4 | 10        |
| 41 | Minimal requirements for ubiquitination-mediated regulation of thyroid hormone activation. Journal of Molecular Endocrinology, 2014, 53, 217-226.                                                                                           | 2.5 | 9         |
| 42 | Thyrotropin-Releasing-Hormone-Synthesizing Neurons of the Hypothalamic Paraventricular Nucleus<br>Are Inhibited by Glycinergic Inputs. Thyroid, 2019, 29, 1858-1868.                                                                        | 4.5 | 5         |
| 43 | Expression of glucagon-like peptide 1 receptor in neuropeptide Y neurons of the arcuate nucleus in mice. Brain Structure and Function, 2022, 227, 77-87.                                                                                    | 2.3 | 4         |
| 44 | Different Types of Luciferase Reporters Show Distinct Susceptibility to T3-Evoked Downregulation.<br>Thyroid, 2016, 26, 179-182.                                                                                                            | 4.5 | 3         |
| 45 | Tanycyte specific ablation of diacylglycerol lipase alpha stimulates the hypothalamicâ€pituitaryâ€thyroid<br>axis by decreasing the endocannabinoid mediated inhibition of TRH release. Journal of<br>Neuroendocrinology, 2022, 34, e13079. | 2.6 | 2         |
| 46 | Variable proopiomelanocortin expression in tanycytes of the adult rat hypothalamus and pituitary stalk. Journal of Comparative Neurology, 2017, 525, spc1-spc1.                                                                             | 1.6 | 0         |
| 47 | T3 Enters Axon Terminals of Mouse Cortical Neurons, Is Retrogradely Transported to the Cell Nucleus and Activates Gene Expression, Journal of the Endocrine Society, 2021, 5, A978-A978.                                                    | 0.2 | 0         |