Kristi S Anseth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5136427/publications.pdf

Version: 2024-02-01

6254 5539 27,670 172 80 163 citations h-index g-index papers 174 174 174 21646 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Osteopontin activity modulates sexâ€specific calcification in engineered valve tissue mimics. Bioengineering and Translational Medicine, 2023, 8, .	7.1	2
2	Impact of Collagen Triple Helix Structure on Melanoma Cell Invadopodia Formation and Matrix Degradation upon BRAF Inhibitor Treatment. Advanced Healthcare Materials, 2022, 11, e2101592.	7.6	2
3	Genes That Escape X Chromosome Inactivation Modulate Sex Differences in Valve Myofibroblasts. Circulation, 2022, 145, 513-530.	1.6	28
4	Controlled Degradation of Cast and 3-D Printed Photocurable Thioester Networks via Thiolâ \in "Thioester Exchange. Macromolecules, 2022, 55, 1376-1385.	4.8	16
5	Prothymosin Alpha: A Novel Contributor to Estradiol Receptor Alpha–Mediated CD8 ⁺ T-Cell Pathogenic Responses and Recognition of Type 1 Collagen in Rheumatic Heart Valve Disease. Circulation, 2022, 145, 531-548.	1.6	12
6	Network modeling predicts personalized gene expression and drug responses in valve myofibroblasts cultured with patient sera. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
7	4D Materials with Photoadaptable Properties Instruct and Enhance Intestinal Organoid Development. ACS Biomaterials Science and Engineering, 2022, 8, 4634-4638.	5.2	7
8	Synthesis, selective decoration and photocrosslinking of <scp>selfâ€immolative</scp> poly(thioester)â€PEG hydrogels. Polymer International, 2022, 71, 906-911.	3.1	5
9	Kinetic Analysis of Degradation in Thioester Cross-linked Hydrogels as a Function of Thiol Concentration, p <i>K</i> _a , and Presentation. Macromolecules, 2022, 55, 2123-2129.	4.8	10
10	In Situ Superâ€Resolution Imaging of Organoids and Extracellular Matrix Interactions via Phototransfer by Allyl Sulfide Exchangeâ€Expansion Microscopy (PhASEâ€ExM). Advanced Materials, 2022, 34, e2109252.	21.0	16
11	Hydrogel cultures reveal Transient Receptor Potential Vanilloid 4 regulation of myofibroblast activation and proliferation in valvular interstitial cells. FASEB Journal, 2022, 36, e22306.	0.5	6
12	Granular PEG hydrogels mediate osteoporotic MSC clustering via N-cadherin influencing the pro-resorptive bias of their secretory profile. Acta Biomaterialia, 2022, 145, 77-87.	8.3	9
13	Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell, 2022, 29, 678-691.	11.1	28
14	Stress Relaxation and Composition of Hydrazoneâ€Crosslinked Hybrid Biopolymerâ€Synthetic Hydrogels Determine Spreading and Secretory Properties of MSCs. Advanced Healthcare Materials, 2022, 11, e2200393.	7.6	11
15	4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture. Small, 2022, 18, .	10.0	22
16	Intracellular Crowding by Bioâ€Orthogonal Hydrogel Formation Induces Reversible Molecular Stasis. Advanced Materials, 2022, 34, .	21.0	8
17	Dynamic covalent hydrogels as biomaterials to mimic the viscoelasticity of soft tissues. Progress in Materials Science, 2021, 120, 100738.	32.8	131
18	Charged Poly(<i>N</i> -isopropylacrylamide) Nanogels for the Stabilization of High Isoelectric Point Proteins. ACS Biomaterials Science and Engineering, 2021, 7, 4282-4292.	5.2	16

#	Article	IF	CITATIONS
19	Engineering the MSC Secretome: A Hydrogel Focused Approach. Advanced Healthcare Materials, 2021, 10, e2001948.	7.6	65
20	Mesenchymal stem <scp>cellâ€inspired</scp> microgel scaffolds to control macrophage polarization. Bioengineering and Translational Medicine, 2021, 6, e10217.	7.1	18
21	Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction. Science Advances, 2021, 7, .	10.3	63
22	Mechanobiological Interactions between Dynamic Compressive Loading and Viscoelasticity on Chondrocytes in Hydrazone Covalent Adaptable Networks for Cartilage Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2002030.	7.6	16
23	Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nature Biomedical Engineering, 2021, 5, 1485-1499.	22.5	71
24	Photoclick Chemistry: A Bright Idea. Chemical Reviews, 2021, 121, 6915-6990.	47.7	113
25	Cardiac Fibroblasts Mediate a Sexually Dimorphic Fibrotic Response to βâ€Adrenergic Stimulation. Journal of the American Heart Association, 2021, 10, e018876.	3.7	20
26	3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices. Biofabrication, 2021, 13, 044104.	7.1	21
27	Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials, 2021, 277, 121097.	11.4	12
28	Matters of the heart: Cellular sex differences. Journal of Molecular and Cellular Cardiology, 2021, 160, 42-55.	1.9	40
29	Three-dimensional encapsulation of adult mouse cardiomyocytes in hydrogels with tunable stiffness. Progress in Biophysics and Molecular Biology, 2020, 154, 71-79.	2.9	26
30	Thiolâ€ene Hydrogels for Local Delivery of PTH for Bone Regeneration in Critical Size defects. Journal of Orthopaedic Research, 2020, 38, 536-544.	2.3	16
31	Porous bio-click microgel scaffolds control hMSC interactions and promote their secretory properties. Biomaterials, 2020, 232, 119725.	11.4	43
32	Designing Microgels for Cell Culture and Controlled Assembly of Tissue Microenvironments. Advanced Functional Materials, 2020, 30, 1907670.	14.9	58
33	Degradable and Resorbable Polymers. , 2020, , 167-190.		7
34	Secreted Factors From Proinflammatory Macrophages Promote an Osteoblast-Like Phenotype in Valvular Interstitial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e296-e308.	2.4	41
35	Defining the Cardiac Fibroblast Secretome in a Fibrotic Microenvironment. Journal of the American Heart Association, 2020, 9, e017025.	3.7	33
36	Calcium Signaling Regulates Valvular Interstitial Cell Alignment and Myofibroblast Activation in Fastâ€Relaxing Boronate Hydrogels. Macromolecular Bioscience, 2020, 20, e2000268.	4.1	19

#	Article	IF	CITATIONS
37	Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21258-21266.	7.1	60
38	Bioorthogonal click chemistries enable simultaneous spatial patterning of multiple proteins to probe synergistic protein effects on fibroblast function. Biomaterials, 2020, 255, 120205.	11.4	21
39	The Effect of Thiol Structure on Allyl Sulfide Photodegradable Hydrogels and their Application as a Degradable Scaffold for Organoid Passaging. Advanced Materials, 2020, 32, e1905366.	21.0	58
40	Viscoelasticity of hydrazone crosslinked poly(ethylene glycol) hydrogels directs chondrocyte morphology during mechanical deformation. Biomaterials Science, 2020, 8, 3804-3811.	5.4	15
41	Phototunable Viscoelasticity in Hydrogels Through Thioester Exchange. Annals of Biomedical Engineering, 2020, 48, 2053-2063.	2.5	22
42	Relaxation of Extracellular Matrix Forces Directs Crypt Formation and Architecture in Intestinal Organoids. Advanced Healthcare Materials, 2020, 9, e1901214.	7.6	58
43	Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)- <i>co</i> -Diacrylate Macromers. Macromolecules, 2020, 53, 2295-2298.	4.8	7
44	Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction. Biomaterials, 2019, 223, 119430.	11.4	59
45	Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Science Translational Medicine, 2019, 11 , .	12.4	41
46	PEG–Anthracene Hydrogels as an Onâ€Demand Stiffening Matrix To Study Mechanobiology. Angewandte Chemie, 2019, 131, 10017-10021.	2.0	19
47	PEG–Anthracene Hydrogels as an Onâ€Demand Stiffening Matrix To Study Mechanobiology. Angewandte Chemie - International Edition, 2019, 58, 9912-9916.	13.8	77
48	Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Applied Materials & Distriction (2019), 11, 18671-18680.	8.0	47
49	Photo-induced viscoelasticity in cytocompatible hydrogel substrates. New Journal of Physics, 2019, 21, 045004.	2.9	24
50	Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering. Acta Biomaterialia, 2019, 83, 71-82.	8.3	86
51	Extended Exposure to Stiff Microenvironments Leads to Persistent Chromatin Remodeling in Human Mesenchymal Stem Cells. Advanced Science, 2019, 6, 1801483.	11.2	128
52	Rescuing mesenchymal stem cell regenerative properties on hydrogel substrates post serial expansion. Bioengineering and Translational Medicine, 2019, 4, 51-60.	7.1	58
53	Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials, 2018, 178, 496-503.	11.4	142
54	Thermal Stabilization of Biologics with Photoresponsive Hydrogels. Biomacromolecules, 2018, 19, 740-747.	5.4	30

#	Article	IF	Citations
55	Engineering precision biomaterials for personalized medicine. Science Translational Medicine, 2018, 10,	12.4	145
56	Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. Bioconjugate Chemistry, 2018, 29, 905-913.	3.6	132
57	Synthesis of Microgel Sensors for Spatial and Temporal Monitoring of Protease Activity. ACS Biomaterials Science and Engineering, 2018, 4, 378-387.	5.2	36
58	FGF-2 inhibits contractile properties of valvular interstitial cell myofibroblasts encapsulated in 3D MMP-degradable hydrogels. APL Bioengineering, 2018, 2, 046104.	6.2	27
59	Secondary Photocrosslinking of Click Hydrogels To Probe Myoblast Mechanotransduction in Three Dimensions. Journal of the American Chemical Society, 2018, 140, 11585-11588.	13.7	64
60	Adaptable Fast Relaxing Boronateâ€Based Hydrogels for Probing Cell–Matrix Interactions. Advanced Science, 2018, 5, 1800638.	11.2	143
61	A Reversible and Repeatable Thiol–Ene Bioconjugation for Dynamic Patterning of Signaling Proteins in Hydrogels. ACS Central Science, 2018, 4, 909-916.	11.3	122
62	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
63	Amplified Photodegradation of Cellâ€Laden Hydrogels via an Addition–Fragmentation Chain Transfer Reaction. Advanced Materials, 2017, 29, 1605001.	21.0	88
64	Clickable Microgel Scaffolds as Platforms for 3D Cell Encapsulation. Advanced Healthcare Materials, 2017, 6, 1700254.	7.6	93
65	Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. Biomaterials, 2017, 131, 131-144.	11.4	75
66	Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel Promotes Cardiomyocytes Survival and Maturation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31645-31656.	8.0	52
67	Dynamic Changes in Material Properties and Degradation of Poly(ethylene glycol)–Hydrazone Gels as a Function of pH. Macromolecules, 2017, 50, 7351-7360.	4.8	29
68	Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments. Angewandte Chemie - International Edition, 2017, 56, 12132-12136.	13.8	220
69	Spatiotemporal hydrogel biomaterials for regenerative medicine. Chemical Society Reviews, 2017, 46, 6532-6552.	38.1	317
70	Spatially patterned matrix elasticity directs stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4439-45.	7.1	184
71	The design of reversible hydrogels to capture extracellular matrix dynamics. Nature Reviews Materials, 2016, 1, .	48.7	554
72	Enhanced user-control of small molecule drug release from a poly(ethylene glycol) hydrogel via azobenzene/cyclodextrin complex tethers. Journal of Materials Chemistry B, 2016, 4, 1035-1039.	5.8	41

#	Article	IF	CITATIONS
73	Photoregulated Hydrazone-Based Hydrogel Formation for Biochemically Patterning 3D Cellular Microenvironments. ACS Macro Letters, 2016, 5, 19-23.	4.8	49
74	Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials, 2016, 74, 31-41.	11.4	104
75	Progress in material design for biomedical applications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14444-14451.	7.1	201
76	Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials, 2015, 49, 47-56.	11.4	187
77	Photoresponsive Elastic Properties of Azobenzene-Containing Poly(ethylene-glycol)-Based Hydrogels. Biomacromolecules, 2015, 16, 798-806.	5 . 4	165
78	Development of a Cellularly Degradable PEG Hydrogel to Promote Articular Cartilage Extracellular Matrix Deposition. Advanced Healthcare Materials, 2015, 4, 702-713.	7.6	139
79	Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3757-64.	7.1	149
80	Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5366-5371.	7.1	52
81	Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough?. Annals of Biomedical Engineering, 2015, 43, 489-500.	2.5	155
82	In vitro model alveoli from photodegradable microsphere templates. Biomaterials Science, 2015, 3, 821-832.	5.4	48
83	Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels. Journal of Controlled Release, 2015, 219, 95-106.	9.9	103
84	Cardiac valve cells and their microenvironmentâ€"insights from in vitro studies. Nature Reviews Cardiology, 2014, 11, 715-727.	13.7	80
85	Photoâ€Click Living Strategy for Controlled, Reversible Exchange of Biochemical Ligands. Advanced Materials, 2014, 26, 2521-2526.	21.0	124
86	The role of valvular endothelial cell paracrine signaling and matrix elasticity on valvular interstitial cell activation. Biomaterials, 2014, 35, 3596-3606.	11.4	71
87	Dimensionality and Size Scaling of Coordinated Ca2+ Dynamics in MIN6 β-cell Clusters. Biophysical Journal, 2014, 106, 299-309.	0.5	39
88	Mechanical memory and dosing influence stem cell fate. Nature Materials, 2014, 13, 645-652.	27.5	943
89	Biophysically Defined and Cytocompatible Covalently Adaptable Networks as Viscoelastic 3D Cell Culture Systems. Advanced Materials, 2014, 26, 865-872.	21.0	337
90	Clickable, Photodegradable Hydrogels to Dynamically Modulate Valvular Interstitial Cell Phenotype. Advanced Healthcare Materials, 2014, 3, 649-657.	7.6	54

#	Article	IF	CITATIONS
91	Coumarin-Based Photodegradable Hydrogel: Design, Synthesis, Gelation, and Degradation Kinetics. ACS Macro Letters, 2014, 3, 515-519.	4.8	104
92	Bis-Aliphatic Hydrazone-Linked Hydrogels Form Most Rapidly at Physiological pH: Identifying the Origin of Hydrogel Properties with Small Molecule Kinetic Studies. Chemistry of Materials, 2014, 26, 2382-2387.	6.7	102
93	Roles of transforming growth factorâ€Î²1 and OBâ€cadherin in porcine cardiac valve myofibroblast differentiation. FASEB Journal, 2014, 28, 4551-4562.	0.5	32
94	Design and Characterization of a Synthetically Accessible, Photodegradable Hydrogel for User-Directed Formation of Neural Networks. Biomacromolecules, 2014, 15, 2808-2816.	5.4	90
95	Mechanical Properties and Degradation of Chain and Step-Polymerized Photodegradable Hydrogels. Macromolecules, 2013, 46, 2785-2792.	4.8	147
96	A Diels–Alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells. Biomaterials, 2013, 34, 4150-4158.	11.4	72
97	Monitoring degradation of matrix metalloproteinases-cleavable PEG hydrogels via multiple particle tracking microrheology. Soft Matter, 2013, 9, 1570-1579.	2.7	69
98	Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. Biomacromolecules, 2013, 14, 949-953.	5.4	232
99	Bioorthogonal Click Chemistry: An Indispensable Tool to Create Multifaceted Cell Culture Scaffolds. ACS Macro Letters, 2013, 2, 5-9.	4.8	216
100	Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19336-19341.	7.1	140
101	Modeling controlled photodegradation in optically thick hydrogels. Journal of Polymer Science Part A, 2013, 51, 1899-1911.	2.3	37
102	Wavelengthâ€Controlled Photocleavage for the Orthogonal and Sequential Release of Multiple Proteins. Angewandte Chemie - International Edition, 2013, 52, 13803-13807.	13.8	152
103	In Situ Control of Cell Substrate Microtopographies Using Photolabile Hydrogels. Small, 2013, 9, 578-584.	10.0	48
104	Dynamic Microenvironments: The Fourth Dimension. Science Translational Medicine, 2012, 4, 160ps24.	12.4	144
105	3D Photofixation Lithography in Diels–Alder Networks. Macromolecular Rapid Communications, 2012, 33, 2092-2096.	3.9	57
106	Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integrative Biology (United Kingdom), 2012, 4, 1540.	1.3	47
107	Photocontrolled Nanoparticles for On-Demand Release of Proteins. Biomacromolecules, 2012, 13, 2219-2224.	5.4	94
108	Thiol–Ene Photopolymerizations Provide a Facile Method To Encapsulate Proteins and Maintain Their Bioactivity. Biomacromolecules, 2012, 13, 2410-2417.	5.4	170

#	Article	IF	CITATIONS
109	Manipulation of miRNA activity accelerates osteogenic differentiation of hMSCs in engineered 3D scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 314-324.	2.7	49
110	Strategies to reduce dendritic cell activation through functional biomaterial design. Biomaterials, 2012, 33, 3615-3625.	11.4	79
111	Photoreversible Patterning of Biomolecules within Clickâ€Based Hydrogels. Angewandte Chemie - International Edition, 2012, 51, 1816-1819.	13.8	270
112	Redirecting Valvular Myofibroblasts into Dormant Fibroblasts through Light-mediated Reduction in Substrate Modulus. PLoS ONE, 2012, 7, e39969.	2.5	146
113	Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction. Macromolecules, 2011, 44, 2444-2450.	4.8	307
114	Affinity Peptides Protect Transforming Growth Factor Beta During Encapsulation in Poly(ethylene) Tj ETQq0 0 0 0	gBT_/Over	lock 10 Tf 50
115	Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nature Chemistry, 2011, 3, 925-931.	13.6	610
116	Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chemistry, 2011, 3, 256-259.	13.6	342
117	Reaction Rates and Mechanisms for Radical, Photoinitated Addition of Thiols to Alkynes, and Implications for Thiolâ^'Yne Photopolymerizations and Click Reactions. Macromolecules, 2010, 43, 4113-4119.	4.8	156
118	Tunable Hydrogels for External Manipulation of Cellular Microenvironments through Controlled Photodegradation. Advanced Materials, 2010, 22, 61-66.	21.0	196
119	Mechanical Properties of Cellularly Responsive Hydrogels and Their Experimental Determination. Advanced Materials, 2010, 22, 3484-3494.	21.0	394
120	In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials, 2010, 31, 1-8.	11.4	386
121	Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nature Protocols, 2010, 5, 1867-1887.	12.0	242
122	Bioapplications of Networks Based on Photoâ€Crossâ€Linked Hyperbranched Polymers. Macromolecular Symposia, 2010, 291-292, 307-313.	0.7	6
123	Synthesis of cyclic, multivalent Arg-Gly-Asp using sequential thiol–ene/thiol–yne photoreactions. Chemical Communications, 2010, 46, 5781.	4.1	43
124	On-resin peptide macrocyclization using thiol–ene click chemistry. Chemical Communications, 2010, 46, 4061.	4.1	87
125	Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. Soft Matter, 2010, 6, 5100.	2.7	117
126	Repair of a Calvarial Defect With Biofactor and Stem Cell–Embedded Polyethylene Glycol Scaffold. Archives of Facial Plastic Surgery, 2010, 12, 166-171.	0.7	16

#	Article	IF	Citations
127	A Versatile Synthetic Extracellular Matrix Mimic via Thiolâ€Norbornene Photopolymerization. Advanced Materials, 2009, 21, 5005-5010.	21.0	578
128	Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering, 2009, 103, 655-663.	3.3	2,244
129	PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharmaceutical Research, 2009, 26, 631-643.	3.5	846
130	Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nature Materials, 2009, 8, 659-664.	27.5	776
131	Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials, 2009, 30, 6048-6054.	11.4	345
132	Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials, 2009, 30, 6702-6707.	11.4	951
133	Thiolâ^'Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks. Macromolecules, 2009, 42, 211-217.	4.8	357
134	Photocrosslinking of Gelatin Macromers to Synthesize Porous Hydrogels That Promote Valvular Interstitial Cell Function. Tissue Engineering - Part A, 2009, 15, 3221-3230.	3.1	302
135	Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties. Science, 2009, 324, 59-63.	12.6	1,541
136	Three-Dimensional Biochemical Patterning of Click-Based Composite Hydrogels via Thiolene Photopolymerization. Biomacromolecules, 2008, 9, 1084-1087.	5.4	175
137	Development and characterization of degradable thiol-allyl ether photopolymers. Polymer, 2007, 48, 4589-4600.	3.8	65
138	Exogenously Triggered, Enzymatic Degradation of Photopolymerized Hydrogels with Polycaprolactone Subunits:Â Experimental Observation and Modeling of Mass Loss Behavior. Biomacromolecules, 2006, 7, 1968-1975.	5.4	102
139	Controlling Network Structure in Degradable Thiolâ^'Acrylate Biomaterials to Tune Mass Loss Behavior. Biomacromolecules, 2006, 7, 2827-2836.	5.4	94
140	Modeling of network degradation in mixed step-chain growth polymerizations. Polymer, 2005, 46, 4212-4222.	3.8	66
141	Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials, 2005, 26, 4495-4506.	11.4	257
142	Valvular Myofibroblast Activation by Transforming Growth Factor-β. Circulation Research, 2004, 95, 253-260.	4.5	349
143	Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels. Annals of Biomedical Engineering, 2004, 32, 407-417.	2.5	212
144	Encapsulating chondrocytes in copolymer gels: Bimodal degradation kinetics influence cell phenotype and extracellular matrix development. Journal of Biomedical Materials Research Part B, 2004, 70A, 560-568.	3.1	85

#	Article	IF	CITATIONS
145	Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of Orthopaedic Research, 2004, 22, 1143-1149.	2.3	169
146	CELL–MATERIAL INTERACTIONS. Advances in Chemical Engineering, 2004, 29, 7-46.	0.9	26
147	In situ forming degradable networks and their application in tissue engineering and drug delivery. Journal of Controlled Release, 2002, 78, 199-209.	9.9	430
148	Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene) Tj ETQq0 (OoggBT/C	Overlock 10 T
149	Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 2002, 23, 4315-4323.	11.4	906
150	A Generalized Bulk-Degradation Model for Hydrogel Networks Formed from Multivinyl Cross-linking Molecules. Journal of Physical Chemistry B, 2001, 105, 5131-5138.	2.6	74
151	Verification of scaling laws for degrading PLA-b-PEG-b-PLA hydrogels. AICHE Journal, 2001, 47, 1432-1437.	3.6	46
152	Predicting Controlled-Release Behavior of Degradable PLA-b-PEG-b-PLA Hydrogels. Macromolecules, 2001, 34, 4630-4635.	4.8	185
153	Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. Journal of Biomedical Materials Research Part B, 2000, 51, 352-359.	3.1	89
154	A review of photocrosslinked polyanhydrides:. Biomaterials, 2000, 21, 2395-2404.	11.4	169
155	Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 439-457.	3. 5	674
156	Release Behavior of High Molecular Weight Solutes from Poly(ethylene glycol)-Based Degradable Networks. Macromolecules, 2000, 33, 2509-2515.	4.8	149
157	A Statistical Kinetic Model for the Bulk Degradation of PLA-b-PEG-b-PLA Hydrogel Networks. Journal of Physical Chemistry B, 2000, 104, 7043-7049.	2.6	170
158	Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. Journal of Biomedical Materials Research Part B, 2000, 51, 352-359.	3.1	2
159	Photopolymerizable degradable polyanhydrides with osteocompatibility. Nature Biotechnology, 1999, 17, 156-159.	17.5	186
160	MALDI-TOF Characterization of Highly Cross-Linked, Degradable Polymer Networks. Macromolecules, 1999, 32, 1438-1444.	4.8	55
161	Cogelation of Hydrolyzable Cross-Linkers and Poly(ethylene oxide) Dimethacrylate and Their Use as Controlled Release Vehicles. ACS Symposium Series, 1999, , 1-13.	0.5	1
162	Reaction Behavior of Biodegradable, Photo-Cross-Linkable Polyanhydrides. Macromolecules, 1998, 31, 4120-4125.	4.8	102

#	Article	IF	CITATIONS
163	Synthesis and Characterization of Photo-Cross-Linked Polymers Based on Poly(I-lactic) Tj ETQq1 1 0.784314 rgBT	/Qverlock	10 Tf 50 74
164	Photopolymerization of Novel Degradable Networks for Orthopedic Applications. ACS Symposium Series, 1997, , 189-202.	0.5	24
165	Radical concentrations, environments, and reactivities during crosslinking polymerizations. Macromolecular Chemistry and Physics, 1996, 197, 833-848.	2.2	84
166	Mechanical properties of hydrogels and their experimental determination. Biomaterials, 1996, 17, 1647-1657.	11.4	980
167	Microstructural evolution in polymerizations of tetrafunctional monomers. Macromolecular Symposia, 1995, 93, 269-276.	0.7	14
168	UV—Visible Spectroscopy To Determine Free-Volume Distributions During Multifunctional Monomer Polymerizations. ACS Symposium Series, 1995, , 166-182.	0.5	1
169	Kinetic gelation predictions of species aggregation in tetrafunctional monomer polymerizations. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1769-1780.	2.1	38
170	Polymerization kinetics and volume relaxation behavior of photopolymerized multifunctional monomers producing highly crosslinked networks. Journal of Polymer Science Part A, 1994, 32, 139-147.	2.3	122
171	Structural Evolution of Highly Crosslinked Polymer Networks. Materials Research Society Symposia Proceedings, 1994, 355, 619.	0.1	O
172	Structural Evolution of Highly Crosslinked Polymer Networks. Materials Research Society Symposia Proceedings, 1994, 355, 65.	0.1	0