Habib Samady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5135046/publications.pdf

Version: 2024-02-01

221 papers

10,691 citations

50276 46 h-index 36028

253 all docs

253 docs citations

253 times ranked 8676 citing authors

g-index

#	Article	IF	CITATIONS
1	Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI. New England Journal of Medicine, 2017, 376, 1824-1834.	27.0	742
2	Five-Year Outcomes with PCI Guided by Fractional Flow Reserve. New England Journal of Medicine, 2018, 379, 250-259.	27.0	622
3	Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease. Circulation, 2011, 124, 779-788.	1.6	579
4	Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet, The, 2016, 388, 2618-2628.	13.7	473
5	Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. Journal of the American College of Cardiology, 2003, 42, 64-70.	2.8	372
6	Effects of Statins on CoronaryÂAtherosclerotic Plaques. JACC: Cardiovascular Imaging, 2018, 11, 1475-1484.	5.3	335
7	Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. Journal of the American College of Cardiology, 2018, 71, 2511-2522.	2.8	328
8	Coronary Pressure Measurement After Stenting Predicts Adverse Events at Follow-Up. Circulation, 2002, 105, 2950-2954.	1.6	293
9	Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet, The, 2019, 394, 1629-1637.	13.7	263
10	Current Concepts of Integrated Coronary Physiology in the Catheterization Laboratory. Journal of the American College of Cardiology, 2010, 55, 173-185.	2.8	260
11	Myocardial Bridging. Journal of the American College of Cardiology, 2014, 63, 2346-2355.	2.8	234
12	Failure to Improve Left Ventricular Function After Coronary Revascularization for Ischemic Cardiomyopathy Is Not Associated With Worse Outcome. Circulation, 1999, 100, 1298-1304.	1.6	206
13	Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. American Journal of Cardiology, 2002, 90, 210-215.	1.6	198
14	Role of biomechanical forces in the natural history of coronary atherosclerosis. Nature Reviews Cardiology, 2016, 13, 210-220.	13.7	193
15	Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. European Heart Journal, 2019, 40, 3421-3433.	2.2	178
16	Prospective Assessment of the DiagnosticÂAccuracy of Instantaneous Wave-Free Ratio to Assess Coronary Stenosis Relevance. JACC: Cardiovascular Interventions, 2015, 8, 824-833.	2.9	172
17	Blinded Physiological Assessment of Residual Ischemia After Successful Angiographic Percutaneous CoronaryÂlntervention. JACC: Cardiovascular Interventions, 2019, 12, 1991-2001.	2.9	147
18	Shear stress and plaque development. Expert Review of Cardiovascular Therapy, 2010, 8, 545-556.	1.5	142

#	Article	IF	Citations
19	Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies. Journal of the American College of Cardiology, 2020, 76, 1226-1243.	2.8	140
20	Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents. JACC: Cardiovascular Interventions, 2017, 10, 462-473.	2.9	138
21	Prevalence and Characteristics ofÂTCFA and Degree of Coronary Artery Stenosis. Journal of the American College of Cardiology, 2014, 64, 672-680.	2.8	131
22	High Coronary Shear Stress in Patients With Coronary Artery Disease Predicts Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 1926-1935.	2.8	124
23	Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease. Circulation, 2016, 133, 361-369.	1.6	115
24	Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes. JACC: Cardiovascular Interventions, 2018, 11, 1437-1449.	2.9	111
25	Association of Coronary Wall Shear Stress With Atherosclerotic Plaque Burden, Composition, and Distribution in Patients With Coronary Artery Disease. Journal of the American Heart Association, 2012, 1, e002543.	3.7	109
26	Contemporary Clinical Applications of Coronary Intravascular Ultrasound. JACC: Cardiovascular Interventions, 2011, 4, 1155-1167.	2.9	107
27	Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis, 2014, 232, 271-276.	0.8	105
28	Coronary flow reserve abnormalities in patients with diabetes mellitus who have end-stage renal disease and normal epicardial coronary arteries. American Heart Journal, 2004, 147, 1017-1023.	2.7	103
29	Circulating CD34 ⁺ Progenitor Cells and Risk of Mortality in a Population With Coronary Artery Disease. Circulation Research, 2015, 116, 289-297.	4.5	102
30	Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. Journal of the American College of Cardiology, 2003, 41, 827-833.	2.8	101
31	Hybrid Coronary Revascularization Versus Off-Pump Coronary Artery Bypass Grafting for the Treatment of Multivessel Coronary Artery Disease. Annals of Thoracic Surgery, 2011, 92, 1695-1702.	1.3	99
32	High wall shear stress and high-risk plaque: an emerging concept. International Journal of Cardiovascular Imaging, 2017, 33, 1089-1099.	1.5	96
33	Association of High-Density Calcified 1K Plaque With Risk of Acute Coronary Syndrome. JAMA Cardiology, 2020, 5, 282.	6.1	90
34	Quantification of Coronary Atherosclerosis in the Assessment of Coronary Artery Disease. Circulation: Cardiovascular Imaging, 2018, 11, e007562.	2.6	81
35	Fractional Flow Reserve of Infarct-Related Arteries Identifies Reversible Defects on Noninvasive Myocardial Perfusion Imaging Early After Myocardial Infarction. Journal of the American College of Cardiology, 2006, 47, 2187-2193.	2.8	80
36	Fractional Flow Reserve Compared With Intravascular Ultrasound Guidance for Optimizing Stent Deployment. Circulation, 2001, 104, 1917-1922.	1.6	73

#	Article	IF	Citations
37	Localized intramural drug delivery during balloon angioplasty using hydrogel-coated balloons and pressure-augmented diffusion. Journal of the American College of Cardiology, 1994, 23, 1570-1577.	2.8	71
38	Association of Statin Treatment With Progression of Coronary Atherosclerotic Plaque Composition. JAMA Cardiology, 2021, 6, 1257.	6.1	70
39	Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. European Heart Journal, 2019, 40, 1411-1422.	2.2	68
40	Natural History of Diabetic Coronary Atherosclerosis by Quantitative Measurement of Serial Coronary Computed Tomographic Angiography. JACC: Cardiovascular Imaging, 2018, 11, 1461-1471.	5.3	64
41	Pharmacologic stress perfusion imaging with adenosine: Role of simultaneous low-level treadmill exercise. Journal of Nuclear Cardiology, 2002, 9, 188-196.	2.1	63
42	Fractional flow reserve: critical review of an important physiologic adjunct to angiography. American Heart Journal, 2004, 147, 792-802.	2.7	63
43	Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease. Journal of the Royal Society Interface, 2017, 14, 20160972.	3.4	61
44	Differential association between the progression of coronary artery calcium score and coronary plaque volume progression according to statins: the Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography Imaging (PARADIGM) study. European Heart Journal Cardiovascular Imaging, 2019, 20, 1307-1314.	1.2	60
45	Differences in Progression to Obstructive Lesions per High-Risk Plaque Features and Plaque Volumes With CCTA. JACC: Cardiovascular Imaging, 2020, 13, 1409-1417.	5.3	58
46	Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry. Journal of the American Heart Association, 2020, 9, e013958.	3.7	53
47	Low Coronary Wall Shear Stress Is Associated With Severe Endothelial Dysfunction in Patients With Nonobstructive Coronary Artery Disease. JACC: Cardiovascular Interventions, 2018, 11, 2072-2080.	2.9	52
48	Early coronary angiography in patients resuscitated from out of hospital cardiac arrest without ST-segment elevation: A systematic review and meta-analysis. Resuscitation, 2017, 121, 127-134.	3.0	47
49	Procedural Outcomes of Percutaneous Coronary Interventions for Chronic Total Occlusions Via the Radial Approach. JACC: Cardiovascular Interventions, 2019, 12, 346-358.	2.9	47
50	Diagnostic accuracy of intravascular ultrasoundâ€derived minimal lumen area compared with fractional flow reserve—Metaâ€analysis: Pooled accuracy of IVUS luminal area versus FFR. Catheterization and Cardiovascular Interventions, 2014, 84, 377-385.	1.7	45
51	Focal Association Between Wall Shear Stress and Clinical Coronary Artery Disease Progression. Annals of Biomedical Engineering, 2015, 43, 94-106.	2.5	44
52	The Relationship Between Coronary Calcification and the Natural History of Coronary Artery Disease. JACC: Cardiovascular Imaging, 2021, 14, 233-242.	5.3	44
53	Relationship between extent of residual myocardial viability and coronary flow reserve in patients with recent myocardial infarction. American Heart Journal, 2001, 141, 456-462.	2.7	43
54	Coronary microvascular dysfunction is associated with higher frequency of thin-cap fibroatheroma. Atherosclerosis, 2012, 223, 384-388.	0.8	42

#	Article	IF	CITATIONS
55	Plasma soluble urokinase-type plasminogen activator receptor level is independently associated with coronary microvascular function in patients with non-obstructive coronary artery disease. Atherosclerosis, 2015, 239, 55-60.	0.8	41
56	Atherogenic index of plasma and the risk of rapid progression of coronary atherosclerosis beyond traditional risk factors. Atherosclerosis, 2021, 324, 46-51.	0.8	41
57	Association of a Genetic Risk Score With Prevalent and Incident Myocardial Infarction in Subjects Undergoing Coronary Angiography. Circulation: Cardiovascular Genetics, 2012, 5, 441-449.	5.1	40
58	Combination of the Thermodilution-Derived Index of Microcirculatory Resistance and Coronary Flow Reserve IsÂHighly Predictive of Microvascular Obstruction on Cardiac Magnetic Resonance Imaging After ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Interventions, 2016, 9, 793-801.	2.9	40
59	Left ventricular inotropic reserve and right ventricular function predict increase of left ventricular ejection fraction after beta-blocker therapy in nonischemic cardiomyopathy. Journal of the American College of Cardiology, 2001, 37, 818-824.	2.8	39
60	Quantitative assessment of coronary plaque volume change related to triglyceride glucose index: The Progression of AtheRosclerotic PlAque Determlned by Computed TomoGraphic Angiography IMaging (PARADIGM) registry. Cardiovascular Diabetology, 2020, 19, 113.	6.8	39
61	Baseline Fractional Flow Reserve and Stent Diameter Predict Optimal Post-Stent Fractional Flow Reserve and Major Adverse Cardiac Events After Bare-Metal Stent Deployment. JACC: Cardiovascular Interventions, 2009, 2, 357-363.	2.9	37
62	Discordance Between Fractional Flow Reserve and Coronary Flow Reserve. JACC: Cardiovascular Interventions, 2017, 10, 999-1007.	2.9	35
63	The role of plasma aminothiols in the prediction of coronary microvascular dysfunction and plaque vulnerability. Atherosclerosis, 2011, 219, 266-272.	0.8	34
64	A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA. JACC: Cardiovascular Imaging, 2020, 13, 2162-2173.	5. 3	34
65	Outcome of patients with acute coronary syndromes and moderate coronary lesions undergoing deferral of revascularization based on fractional flow reserve assessment. Catheterization and Cardiovascular Interventions, 2006, 68, 544-548.	1.7	33
66	Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study. Biomechanics and Modeling in Mechanobiology, 2017, 16, 333-344.	2.8	33
67	Coronary and Peripheral Vasomotor Responses to Mental Stress. Journal of the American Heart Association, 2018, 7, .	3.7	33
68	Novel drug-eluting stents for coronary revascularization. Trends in Cardiovascular Medicine, 2014, 24, 305-313.	4.9	32
69	Contemporary Revascularization Dilemmas in Older Adults. Journal of the American Heart Association, 2020, 9, e014477.	3.7	31
70	Percent atheroma volume: Optimal variable to report whole-heart atherosclerotic plaque burden with coronary CTA, the PARADIGM study. Journal of Cardiovascular Computed Tomography, 2020, 14, 400-406.	1.3	29
71	Usefulness of Atherectomy in Chronic Total Occlusion Interventions (from the PROGRESS-CTO) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 1.6	/Overlock 10
72	Effect of acute myocardial infarction on the utility of fractional flow reserve for the physiologic assessment of the severity of coronary artery narrowing. American Journal of Cardiology, 2004, 93, 1102-1106.	1.6	27

#	Article	IF	CITATIONS
73	Does Flow During Rest and Relaxation Suffice?. Journal of the American College of Cardiology, 2013, 61, 1436-1439.	2.8	26
74	Vasomotor Function Comparative Assessment at 1 and 2 Years Following Implantation of the Absorb Everolimus-Eluting Bioresorbable VascularÂScaffold and the Xience VÂEverolimus-Eluting Metallic Stent inÂPorcine Coronary Arteries. JACC: Cardiovascular Interventions, 2016, 9, 728-741.	2.9	26
75	Remote ischemic preconditioning in patients undergoing cardiovascular surgery: Evidence from a meta-analysis of randomized controlled trials. International Journal of Cardiology, 2016, 221, 34-41.	1.7	26
76	Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis. International Journal of Cardiovascular Imaging, 2016, 32, 189-200.	1.5	26
77	Sex Differences in Instantaneous Wave-Free Ratio or Fractional Flow Reserve–Guided Revascularization Strategy. JACC: Cardiovascular Interventions, 2019, 12, 2035-2046.	2.9	26
78	Sex Differences in Compositional Plaque Volume Progression in Patients With Coronary Artery Disease. JACC: Cardiovascular Imaging, 2020, 13, 2386-2396.	5. 3	26
79	Association of Cardiovascular Disease Risk Factor Burden With Progression of Coronary Atherosclerosis Assessed by Serial Coronary Computed Tomographic Angiography. JAMA Network Open, 2020, 3, e2011444.	5.9	26
80	Non-obstructive high-risk plaques increase the risk of future culprit lesions comparable to obstructive plaques without high-risk features: the ICONIC study. European Heart Journal Cardiovascular Imaging, 2020, 21, 973-980.	1,2	26
81	Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach. Journal of Biomechanical Engineering, 2018, 140, .	1.3	26
82	Localization of culprit lesions in coronary arteries of patients with ST-segment elevation myocardial infarctions: Relation to bifurcations and curvatures. American Heart Journal, 2011, 161, 508-515.	2.7	25
83	Comparison of Major Adverse Cardiac Events Between Instantaneous Wave-Free Ratio and Fractional Flow Reserve–Guided Strategy in Patients With or Without Type 2 Diabetes. JAMA Cardiology, 2019, 4, 857.	6.1	25
84	Longitudinal assessment of coronary plaque volume change related to glycemic status using serial coronary computed tomography angiography: A PARADIGM (Progression of AtheRosclerotic PlAque) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
85	Computed Tomography, 2019, 13, 142-147. Performance of J-CTO and PROGRESS CTO Scores in Predicting Angiographic Success and Long-term Outcomes of Percutaneous Coronary Interventions for Chronic Total Occlusions. American Journal of Cardiology, 2018, 121, 14-20.	1.6	24
86	The influence of multidirectional shear stress on plaque progression and composition changes in human coronary arteries. EuroIntervention, 2019, 15, 692-699.	3.2	24
87	Comprehensive Assessment of Coronary Plaque Progression With Advanced Intravascular Imaging, Physiological Measures, and Wall Shear Stress: A Pilot Doubleâ€Blinded Randomized Controlled Clinical Trial of Nebivolol Versus Atenolol in Nonobstructive Coronary Artery Disease. Journal of the American Heart Association, 2016, 5	3.7	23
88	In-Hospital Outcomes of Chronic Total Occlusion Percutaneous Coronary Interventions in Patients With Prior Coronary Artery Bypass Graft Surgery. Circulation: Cardiovascular Interventions, 2019, 12, e007338.	3.9	23
89	Outcomes of subintimal plaque modification in chronic total occlusion percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2020, 96, 1029-1035.	1.7	23
90	Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning. PLoS ONE, 2020, 15, e0232573.	2. 5	23

#	Article	IF	Citations
91	Patients' views of consent for research enrollment during acute myocardial infarction. Acute Cardiac Care, 2015, 17, 1-4.	0.2	22
92	Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion. Cardiovascular Engineering and Technology, 2013, 4, 464-473.	1.6	20
93	Framework to Co-register Longitudinal Virtual Histology-Intravascular Ultrasound Data in the Circumferential Direction. IEEE Transactions on Medical Imaging, 2013, 32, 1989-1996.	8.9	20
94	Intravascular Imaging Tools in the Cardiac Catheterization Laboratory: Comprehensive Assessment of Anatomy and Physiology. Journal of Cardiovascular Translational Research, 2011, 4, 393-403.	2.4	19
95	Age- and sex-related features of atherosclerosis from coronary computed tomography angiography in patients prior to acute coronary syndrome: results from the ICONIC study. European Heart Journal Cardiovascular Imaging, 2021, 22, 24-33.	1.2	19
96	Progression of whole-heart Atherosclerosis by coronary CT and major adverse cardiovascular events. Journal of Cardiovascular Computed Tomography, 2021, 15, 322-330.	1.3	19
97	Local fluid dynamics in patients with bifurcated coronary lesions undergoing percutaneous coronary interventions. Cardiology Journal, 2021, 28, 321-329.	1.2	18
98	Elevated Levels of Serum Fibrin and Fibrinogen Degradation Products Are Independent Predictors of Larger Coronary Plaques and Greater Plaque Necrotic Core. Circulation Journal, 2016, 80, 931-937.	1.6	17
99	The use of hemodynamic support in massive pulmonary embolism. Catheterization and Cardiovascular Interventions, 2017, 90, 516-520.	1.7	17
100	Impact of Non-obstructive left main disease on the progression of coronary artery disease: A PARADIGM substudy. Journal of Cardiovascular Computed Tomography, 2018, 12, 231-237.	1.3	17
101	Sex-specific effects of diabetes on adverse outcomes after percutaneous coronary intervention: Trends over time. American Heart Journal, 2007, 153, 970-978.	2.7	16
102	Biomechanical Assessment of Fully Bioresorbable Devices. JACC: Cardiovascular Interventions, 2013, 6, 760-761.	2.9	16
103	Association of Wall Shear Stress with Coronary Plaque Progression and Transformation. Interventional Cardiology Clinics, 2015, 4, 491-502.	0.4	16
104	Risk stratification of coronary plaques using physiologic characteristics by CCTA: Focus on shear stress. Journal of Cardiovascular Computed Tomography, 2020, 14, 386-393.	1.3	16
105	Adverse clinical outcomes in patients undergoing both <scp>PCI</scp> and <scp>TAVR</scp> : Analysis from a pooled <scp>multiâ€center</scp> registry. Catheterization and Cardiovascular Interventions, 2021, 97, 529-539.	1.7	16
106	Topological Data Analysis of Coronary Plaques Demonstrates the Natural History of Coronary Atherosclerosis. JACC: Cardiovascular Imaging, 2021, 14, 1410-1421.	5.3	16
107	A Machine Learning-Based Method for Intracoronary OCT Segmentation and Vulnerable Coronary Plaque Cap Thickness Quantification. International Journal of Computational Methods, 2019, 16, 1842008.	1.3	15
108	Association of Tube Voltage With Plaque Composition on Coronary CT Angiography. JACC: Cardiovascular Imaging, 2021, 14, 2429-2440.	5.3	15

#	Article	IF	Citations
109	Electromechanical mapping for detecting myocardial viability and ischemia in patients with severe ischemic cardiomyopathy. American Journal of Cardiology, 2003, 91, 807-811.	1.6	14
110	Electromechanical Mapping Identifies Improvement in Function and Retention of Contractile Reserve After Revascularization in Ischemic Cardiomyopathy. Circulation, 2004, 110, 2410-2416.	1.6	14
111	Temporal Trends in Strutâ€Level Optical Coherence Tomography Evaluation of Coronary Stent Coverage. Catheterization and Cardiovascular Interventions, 2016, 88, 1083-1093.	1.7	14
112	Novel 3-Dimensional Vessel and Scaffold Reconstruction Methodology for the Assessment of Strut-Level Wall Shear Stress After Deployment of BioresorbableÂVascular Scaffolds From the ABSORB III Imaging Substudy. JACC: Cardiovascular Interventions, 2016, 9, 501-503.	2.9	14
113	Percutaneous coronary intervention or coronary artery bypass grafting for unprotected left main coronary artery disease. Catheterization and Cardiovascular Interventions, 2017, 90, 541-552.	1.7	14
114	Prevalence and Outcomes of Percutaneous Coronary Interventions for Ostial Chronic Total Occlusions: Insights From a Multicenter Chronic Total Occlusion Registry. Canadian Journal of Cardiology, 2018, 34, 1264-1274.	1.7	14
115	Re-Visiting Consent for Clinical Research on Acute Myocardial Infarction and Other Emergent Conditions. Progress in Cardiovascular Diseases, 2012, 55, 251-257.	3.1	13
116	Evaluation of a framework for the co-registration of intravascular ultrasound and optical coherence tomography coronary artery pullbacks. Journal of Biomechanics, 2016, 49, 4048-4056.	2.1	13
117	Functional coronary angiography in symptomatic patients with no obstructive coronary artery disease. Catheterization and Cardiovascular Interventions, 2021, 98, 827-835.	1.7	13
118	Association of Plaque Location and Vessel Geometry Determined by Coronary Computed Tomographic Angiography With Future Acute Coronary Syndrome–Causing Culprit Lesions. JAMA Cardiology, 2022, 7, 309.	6.1	13
119	Coronary Microvascular Dysfunction Is Associated With Significant Plaque Burden and Diffuse Epicardial Atherosclerotic Disease. JACC: Cardiovascular Interventions, 2019, 12, 1519-1520.	2.9	12
120	Impact of age on coronary artery plaque progression and clinical outcome: A PARADIGM substudy. Journal of Cardiovascular Computed Tomography, 2021, 15, 232-239.	1.3	12
121	Percutaneous treatment of focal vs. diffuse in-stent restenosis: A prospective randomized comparison of conventional therapies. Catheterization and Cardiovascular Interventions, 2004, 61, 344-349.	1.7	11
122	Comparison of angiographic and IVUS derived coronary geometric reconstructions for evaluation of the association of hemodynamics with coronary artery disease progression. International Journal of Cardiovascular Imaging, 2016, 32, 1327-1336.	1.5	11
123	Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models. Frontiers in Bioengineering and Biotechnology, 2021, 9, 713525.	4.1	11
124	Comparative differences in the atherosclerotic disease burden between the epicardial coronary arteries: quantitative plaque analysis on coronary computed tomography angiography. European Heart Journal Cardiovascular Imaging, 2021, 22, 322-330.	1.2	11
125	Longitudinal quantitative assessment of coronary plaque progression related to body mass index using serial coronary computed tomography angiography. European Heart Journal Cardiovascular Imaging, 2019, 20, 591-599.	1.2	10
126	A Multimodality Image-Based Fluid–Structure Interaction Modeling Approach for Prediction of Coronary Plaque Progression Using IVUS and Optical Coherence Tomography Data With Follow-Up. Journal of Biomechanical Engineering, 2019, 141, .	1.3	10

#	Article	IF	Citations
127	Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study. BioMedical Engineering OnLine, 2020, 19, 90.	2.7	10
128	A single healthcare experience with Impella RP. Catheterization and Cardiovascular Interventions, 2021, 97, E161-E167.	1.7	10
129	Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid–structure interaction models and machine learning methods with patient follow-up data: a feasibility study. BioMedical Engineering OnLine, 2021, 20, 34.	2.7	10
130	Association between Aortic Valve Calcification Progression and Coronary Atherosclerotic Plaque Volume Progression in the PARADIGM Registry. Radiology, 2021, 300, 79-86.	7.3	10
131	Association Between Thrombogenicity Indices and Coronary Microvascular Dysfunction in Patients With Acute Myocardial Infarction. JACC Basic To Translational Science, 2021, 6, 749-761.	4.1	10
132	Familial aggregation of left main coronary artery disease and future risk of coronary events in asymptomatic siblings of affected patients. European Heart Journal, 2008, 29, 826-827.	2.2	9
133	The Sheer Stress of Straightening the Curves. JACC: Cardiovascular Interventions, 2011, 4, 800-802.	2.9	9
134	Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1269-1280.	2.8	9
135	Coronary Circulatory Indexes in Non-Infarct-Related Vascular Territories in a Porcine Acute Myocardial InfarctionÂModel. JACC: Cardiovascular Interventions, 2020, 13, 1155-1167.	2.9	9
136	Appropriate Use Criteria. JACC: Cardiovascular Interventions, 2014, 7, 1010-1013.	2.9	8
137	Bioresorbable polymeric scaffolds for coronary revascularization: Lessons learnt from ABSORB III, ABSORB China, and ABSORB Japan. Global Cardiology Science & Practice, 2015, 2015, 62.	0.4	8
138	Novel biomarkers of coronary microvascular disease. Future Cardiology, 2016, 12, 497-509.	1.2	8
139	Effects of Residual Stress, Axial Stretch, and Circumferential Shrinkage on Coronary Plaque Stress and Strain Calculations: A Modeling Study Using IVUS-Based Near-Idealized Geometries. Journal of Biomechanical Engineering, 2017, 139, .	1.3	8
140	Effects of chronic kidney disease and declining renal function on coronary atherosclerotic plaque progression: a PARADIGM substudy. European Heart Journal Cardiovascular Imaging, 2021, 22, 1072-1082.	1.2	8
141	Relationship between high shear stress and OCT-verified thin-cap fibroatheroma in patients with coronary artery disease. PLoS ONE, 2020, 15, e0244015.	2.5	8
142	Machine Learning Model Comparison for Automatic Segmentation of Intracoronary Optical Coherence Tomography and Plaque Cap Thickness Quantification. CMES - Computer Modeling in Engineering and Sciences, 2020, 123, 631-646.	1.1	8
143	Co-localization of Disturbed Flow Patterns and Occlusive Cardiac Allograft Vasculopathy Lesion Formation in Heart Transplant Patients. Cardiovascular Engineering and Technology, 2015, 6, 25-35.	1.6	7
144	Switching from prasugrel to clopidogrel based on <i>Cytochrome P450 2C19</i> genotyping in East Asian patients stabilized after acute myocardial infarction. Platelets, 2016, 27, 301-307.	2.3	7

#	Article	IF	CITATIONS
145	Per-lesion versus per-patient analysis of coronary artery disease in predicting the development of obstructive lesions: the Progression of AtheRosclerotic PlAque DetermIned by Computed TmoGraphic Angiography Imaging (PARADIGM) study. International Journal of Cardiovascular Imaging, 2020, 36, 2357-2364.	1.5	7
146	Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography. MCB Molecular and Cellular Biomechanics, 2019, 16, 153-161.	0.7	7
147	TCT-2 Deep IVUS: A machine learning framework for fully automatic IVUS segmentation. Journal of the American College of Cardiology, 2018, 72, B1.	2.8	6
148	Bulk Flow and Near Wall Hemodynamics of the Rabbit Aortic Arch and Descending Thoracic Aorta: A 4D PC-MRI Derived Computational Fluid Dynamics Study. Journal of Biomechanical Engineering, 2019, 141, .	1.3	6
149	The Impact of Peripheral Artery Disease in Chronic Total Occlusion Percutaneous Coronary Intervention (Insights From PROGRESS-CTO Registry). Angiology, 2020, 71, 274-280.	1.8	6
150	Rationale and design of the quantification of myocardial blood flow using dynamic PET/CTA-fused imagery (DEMYSTIFY) to determine physiological significance of specific coronary lesions. Journal of Nuclear Cardiology, 2020, 27, 1030-1039.	2.1	6
151	Image-based biomechanical modeling for coronary atherosclerotic plaque progression and vulnerability prediction. International Journal of Cardiology, 2022, 352, 1-8.	1.7	6
152	Comparison of Location of "Culprit Lesions―in Left Anterior Descending Coronary Artery Among Patients With Anterior Wall ST-Segment Elevation Myocardial Infarction Having Ramus Intermedius Coronary Arteries Versus Patients Not Having Such Arteries. American Journal of Cardiology, 2010, 106, 162-166.	1.6	5
153	Use of Coronary Physiology in the Catheterization Laboratory to Guide Treatment in Patients With Coronary Artery Disease. Current Treatment Options in Cardiovascular Medicine, 2011, 13, 35-45.	0.9	5
154	Colocalization of Low and Oscillatory Coronary Wall Shear Stress With Subsequent Culprit Lesion Resulting in Myocardial Infarction in an Orthotopic Heart Transplant Patient. JACC: Cardiovascular Interventions, 2013, 6, 1210-1211.	2.9	5
155	Drug-Eluting Balloons. JACC: Cardiovascular Interventions, 2013, 6, 577-579.	2.9	5
156	Quantification of the focal progression of coronary atherosclerosis through automated co-registration of virtual histology-intravascular ultrasound imaging data. International Journal of Cardiovascular Imaging, 2017, 33, 13-24.	1.5	5
157	Impact of Chronic Kidney Disease on Revascularization and Outcomes in Patients with ST-Elevation Myocardial Infarction. American Journal of Cardiology, 2021, 150, 15-23.	1.6	5
158	Reply. Journal of the American College of Cardiology, 2014, 64, 2179-2181.	2.8	4
159	Coronary Angioplasticity. JACC: Cardiovascular Interventions, 2016, 9, 852-855.	2.9	4
160	Response to Letter Regarding Article "Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease†Circulation, 2016, 133, e667.	1.6	4
161	In-hospital Outcomes of Attempting More Than One Chronic Total Coronary Occlusion Through Percutaneous Intervention During the Same Procedure. American Journal of Cardiology, 2018, 122, 381-387.	1.6	4
162	Impact of concomitant treatment of non-chronic total occlusion lesions at the time of chronic total occlusion intervention. International Journal of Cardiology, 2020, 299, 75-80.	1.7	4

#	Article	lF	Citations
163	Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid–structure interaction simulations. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1383-1397.	2.8	4
164	Clinical Outcomes after Hybrid Coronary Revascularization versus Off-Pump Coronary Artery Bypass. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2009, 4, 299-306.	0.9	4
165	High left ventricular mass index does not limit the utility of fractional flow reserve for the physiologic assessment of lesion severity. Journal of Invasive Cardiology, 2006, 18, 544-9.	0.4	4
166	Intravascular imaging findings in severe coronary vasospasm. Journal of Cardiovascular Medicine, 2011, 12, 578-580.	1.5	3
167	A Comprehensive Acute Coronary Syndrome Algorithm for Centers With Percutaneous Coronary Intervention Capability. Critical Pathways in Cardiology, 2013, 12, 141-149.	0.5	3
168	Can Advanced Physiological Testing Bridge the Gap Between Chest Pain and Nonobstructive Coronary Atherosclerosis?. JACC: Cardiovascular Interventions, 2015, 8, 1454-1456.	2.9	3
169	Ostial right coronary chronic total occlusion: Transesophageal echocardiographic guidance for retrograde aortic reâ€entry. Catheterization and Cardiovascular Interventions, 2018, 91, 1070-1073.	1.7	3
170	Strap In for the Artificial Intelligence Revolution in Interventional Cardiology. JACC: Cardiovascular Interventions, 2019, 12, 1325-1327.	2.9	3
171	Robustness of Fractional Flow Reserve for Lesion Assessment in Non–Infarctâ€Related Arteries of Patients With Myocardial Infarction. Journal of the American Heart Association, 2019, 8, e012456.	3.7	3
172	In Vivo Intravascular Ultrasound-Based 3D Thin-Walled Model for Human Coronary Plaque Progression Study: Transforming Research to Potential Commercialization. International Journal of Computational Methods, 2019, 16, 1842011.	1.3	3
173	Microvascular Assessment of Ranolazine in Non-Obstructive Atherosclerosis. Circulation: Cardiovascular Interventions, 2020, 13, e008204.	3.9	3
174	Geometric and Hemodynamic Evaluation of 3-Dimensional Reconstruction Techniques for the Assessment of Coronary Artery Wall Shear Stress in the Setting of Clinical Disease Progression. , 2011, , .		3
175	Can Statins Alter Coronary Plaque Composition Assessed by Radiofrequency Backscatter Intravascular Ultrasound?âŽâŽEditorials published in JACC: Cardiovascular Interventions reflect the views of the authors and do not necessarily represent the views of JACC: Cardiovascular Interventions or the American College of Cardiology JACC: Cardiovascular Interventions, 2009, 2,	2.9	2
176	Intravascular Ultrasound for Assessment of Coronary Drug-Eluting Stent Deployment. JACC: Cardiovascular Interventions, 2010, 3, 364.	2.9	2
177	SPECT perfusion imaging and myocardial bridges: Bridging the gap of diagnostic uncertainty. Journal of Nuclear Cardiology, 2011, 18, 1000-1002.	2.1	2
178	Coronary Microvasculature. Circulation: Cardiovascular Interventions, 2013, 6, 323-325.	3.9	2
179	How to differentiate the etiology of LV dysfunction as to whether it is "ischemic cardiomyopathyâ€or "dilated non-ischemic cardiomyopathyâ€? Invasive coronary and myocardial assessment is the approach of first choice. Journal of Nuclear Cardiology, 2015, 22, 953-956.	2.1	2
180	Fractional Flow Reserve. JACC: Cardiovascular Interventions, 2017, 10, 1402-1404.	2.9	2

#	Article	IF	CITATIONS
181	Intensive Training and Real-Time Quality Control by a Physiology Core Laboratory. Circulation: Cardiovascular Interventions, 2020, 13, e009077.	3.9	2
182	Optical Coherence Tomography-Based Patient-Specific Residual Multi-Thrombus Coronary Plaque Models With Fluid–Structure Interaction for Better Treatment Decisions: A Biomechanical Modeling Case Study. Journal of Biomechanical Engineering, 2021, 143, .	1.3	2
183	Development of Framework to Examine the Focal Association Between Wall Shear Stress and Coronary Artery Disease Progression in the Clinical Setting., 2013,,.		1
184	Fractional flow reserve for the assessment of complex multivessel disease in a patient after hybrid coronary revascularization. Catheterization and Cardiovascular Interventions, 2013, 81, 1169-1173.	1.7	1
185	Shedding Light on Scaffold Vascular Response. JACC: Cardiovascular Interventions, 2014, 7, 1370-1373.	2.9	1
186	Feasibility of Optical Coherence Tomography–Derived Computational Fluid Dynamics in Calcified Vessels to Assess Treatment With Orbital Atherectomy. JACC: Cardiovascular Interventions, 2016, 9, e65-e66.	2.9	1
187	Progress in Predicting Chronic Total Occlusion Recanalization. JACC: Cardiovascular Interventions, 2016, 9, 10-11.	2.9	1
188	The Ongoing Quest to Predict PlaqueÂRupture. JACC: Cardiovascular Imaging, 2017, 10, 1484-1486.	5.3	1
189	Percutaneous Coronary Intervention Versus Robotic-Assisted Coronary Artery Bypass for Left Anterior Descending Artery Chronic Total Occlusion. JACC: Cardiovascular Interventions, 2018, 11 , $1542-1544$.	2.9	1
190	The Interface Between Coronary Physiology and Severe Aortic Stenosis. JACC: Cardiovascular Interventions, 2018, 11, 2041-2043.	2.9	1
191	Anatomy, Physiology, and Biomechanics. JACC: Cardiovascular Imaging, 2020, 13, 2220-2222.	5.3	1
192	Very late vasomotor responses and gene expression with bioresorbable scaffolds and metallic drugâ€eluting stents. Catheterization and Cardiovascular Interventions, 2021, 98, 723-732.	1.7	1
193	Comparison of coronary atherosclerotic plaque progression in East Asians and Caucasians by serial coronary computed tomographic angiography: A PARADIGM substudy. Journal of Cardiovascular Computed Tomography, 2022, 16, 222-229.	1.3	1
194	Evolving Strategies for the Prevention and Treatment of Coronary Restenosis. Seminars in Cardiothoracic and Vascular Anesthesia, 2003, 7, 281-293.	1.0	0
195	Invasive evaluation of patients after reperfused STEMI: One-stop-shop for anatomy and physiology. Journal of Nuclear Cardiology, 2010, 17, 775-777.	2.1	0
196	Myocardial perfusion imaging to guide percutaneous revascularization of chronic total occlusions: A gate keeper to the final frontier in PCI. Journal of Nuclear Cardiology, 2013, 20, 504-505.	2.1	0
197	LDL cholesterol levels and thin cap fibroatheromas: A dynamic andÂcomplex puzzle. Atherosclerosis, 2015, 243, 179-180.	0.8	0
198	"Just Puff― JACC: Cardiovascular Interventions, 2016, 9, 768-770.	2.9	0

#	Article	IF	CITATIONS
199	Editorial Commentary: Atherogenesis. Trends in Cardiovascular Medicine, 2016, 26, 548-549.	4.9	0
200	The Promise of Vascular Restoration IsÂStillÂAlive. Journal of the American College of Cardiology, 2017, 70, 75-77.	2.8	0
201	TCT-138 Comparison Between Traditional and Guide Catheter Extension Reverse CART: Insights From the PROGRESS-CTO Registry. Journal of the American College of Cardiology, 2018, 72, B59-B60.	2.8	О
202	TCT-78 Impact of Collateral Channel Type on the Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention. Journal of the American College of Cardiology, 2018, 72, B34-B35.	2.8	0
203	COMPARISON OF THE INCIDENCE, CLINICAL CHARACTERISTICS, AND PROCEDURAL OUTCOMES OF CHRONIC TOTAL OCCLUSION INTERVENTIONS AMONG DIFFERENT TARGET VESSELS: INSIGHTS FROM A CONTEMPORARY MULTICENTER-REGISTRY. Journal of the American College of Cardiology, 2019, 73, 1072.	2.8	O
204	TCT-229 Outcomes of "Investment Procedures―in Chronic Total Occlusion Interventions. Journal of the American College of Cardiology, 2019, 74, B228.	2.8	0
205	Coupling Advanced Imaging With Computational Vascular Diagnostics. JACC: Cardiovascular Imaging, 2020, 13, 1033-1035.	5. 3	O
206	TCT CONNECT-41 Impact of Chronic Kidney Disease on Coronary Revascularization and In-Hospital Outcomes in Patients With Acute ST-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology, 2020, 76, B18.	2.8	0
207	Successful Long-term Patency of a Complicated Coronary Aneurysm at a Prior Coronary Branch Stent Treated with a Stent Graft and Dedicated Bifurcation Stent. Korean Circulation Journal, 2021, 51, 551.	1.9	o
208	Measurement of compensatory arterial remodelling over time with serial coronary computed tomography angiography and 3D metrics. European Heart Journal Cardiovascular Imaging, 2021, , .	1.2	0
209	Relation Between Wall Shear Stress and Plaque Necrotic Core in the Left Coronary Arteries of Patients Using Intravascular Ultrasound and Computational Fluid Dynamics. , 2008, , .		o
210	OF MICE AND MEN…AND A CHINA CONNECTION. , 2009, , 193-202.		0
211	Correlation of Longitudinal Intravascular Ultrasound Data for the Clinical Assessment of Coronary Artery Disease Progression. , 2012, , .		O
212	CFD and VH-IVUS Biomechanical Analysis of Coronary Artery Disease With One Year Follow-Up., 2013,,.		0
213	Predicting Plaque Progression Using Patient-Specific Fluid-Structure-Interaction Models Based on IVUS and OCT Images with Follow-Up. MCB Molecular and Cellular Biomechanics, 2019, 16, 75-76.	0.7	О
214	Stenting of saphenous vein grafts—a treacherous road to travel. Journal of Invasive Cardiology, 2011, 23, 220-1.	0.4	0
215	Young Athlete With Complex Aneurysmal Coronary Stenosis. Journal of Invasive Cardiology, 2017, 29, E197-E198.	0.4	O
216	Title is missing!. , 2020, 15, e0244015.		0

#	Article	IF	CITATIONS
217	Title is missing!. , 2020, 15, e0244015.		O
218	Title is missing!. , 2020, 15, e0244015.		0
219	Title is missing!. , 2020, 15, e0244015.		O
220	Title is missing!. , 2020, 15, e0244015.		0
221	Title is missing!. , 2020, 15, e0244015.		O