Jose A Cortes-Briones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5134432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Going deep into schizophrenia with artificial intelligence. Schizophrenia Research, 2022, 245, 122-140.	2.0	39
2	Delta-9-Tetrahydrocannabinol, Cannabidiol, and Acute Psychotomimetic States: A Balancing Act of the Principal Phyto-Cannabinoids on Human Brain and Behavior. Cannabis and Cannabinoid Research, 2022, , .	2.9	0
3	Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. Molecular Psychiatry, 2021, 26, 3192-3200.	7.9	32
4	Hearing the Shape of a Drum: Clinical Outcome Prediction in Participants at Clinical High-Risk for Psychosis With the 40-Hz Auditory Steady-State Response Paradigm. Biological Psychiatry, 2021, 90, 359-361.	1.3	2
5	Characterizing psychosis-relevant phenomena and cognitive function in a unique population with isolated, chronic and very heavy cannabis exposure. Psychological Medicine, 2020, 50, 2452-2459.	4.5	8
6	Psychosis-Relevant Effects of Intravenous Delta-9-Tetrahydrocannabinol: A Mega Analysis of Individual Participant-Data from Human Laboratory Studies. International Journal of Neuropsychopharmacology, 2020, 23, 559-570.	2.1	23
7	Highs and lows of cannabinoid-dopamine interactions: effects of genetic variability and pharmacological modulation of catechol-O-methyl transferase on the acute response to delta-9-tetrahydrocannabinol in humans. Psychopharmacology, 2019, 236, 3209-3219.	3.1	8
8	20.1 BEHAVIORAL, COGNITIVE, AND PSYCHOPHYSIOLOGICAL CHARACTERIZATION AND SHORT-TERM COURSE OF CANNABINOID- INDUCED ACUTE PERSISTENT PSYCHOSIS (CIAPP). Schizophrenia Bulletin, 2019, 45, S121-S122.	4.3	0
9	O11.2. CHARACTERIZING CANNABINOID INDUCED ACUTE PERSISTENT PSYCHOSIS (CIAPP) AS A POSSIBLE SUBTYPE OF SCHIZOPHRENIA USING DEEP LEARNING. Schizophrenia Bulletin, 2019, 45, S194-S194.	4.3	0
10	Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry,the, 2019, 6, 35-45.	7.4	125
11	168. The Effect of Fatty Acid Amide Hydrolase Inhibition on Sleep Architecture in Cannabis Withdrawal. Biological Psychiatry, 2018, 83, S68.	1.3	0
12	Psychotomimetic and Cognitive Effects of Δ 9 -Tetrahydrocannabinol in Laboratory Settings. , 2018, , 75-128.		2
13	Cannabinoid–glutamate interactions and neural oscillations: implications for psychosis. European Journal of Neuroscience, 2018, 48, 2890-2902.	2.6	17
14	Cannabinoid receptor-mediated disruption of sensory gating and neural oscillations: A translational study in rats and humans. Neuropharmacology, 2018, 135, 412-423.	4.1	23
15	The dose-dependent psychomotor effects of intravenous delta-9-tetrahydrocannabinol (Δ ⁹ -THC) in humans. Journal of Psychopharmacology, 2018, 32, 1308-1318.	4.0	27
16	17.2 EFFICACY OF CANNABIDIOL IN THE TREATMENT OF EARLY PSYCHOSIS Schizophrenia Bulletin, 2018, 44, S27-S27.	4.3	1
17	63. Cannabinoid-Mediated Disruption of Sensory Gating and Neural Network Oscillations: A Translational Study in Humans and Rats. Biological Psychiatry, 2017, 81, S26-S27.	1.3	0
18	67. Ketamine-induced Changes in Neural Noise and their Relationship to Psychosis-like Symptoms. Biological Psychiatry, 2017, 81, S28.	1.3	0

#	Article	IF	CITATIONS
19	Cannabinoids and Psychosis. Current Pharmaceutical Design, 2017, 22, 6380-6391.	1.9	39
20	Electroencephalography and Cannabis. , 2016, , 851-862.		2
21	Targeting the ecology within: The role of the gut–brain axis and human microbiota in drug addiction. Medical Hypotheses, 2016, 93, 77-80.	1.5	50
22	Reduced Brain Cannabinoid Receptor Availability in Schizophrenia. Biological Psychiatry, 2016, 79, 997-1005.	1.3	83
23	Rapid Changes in Cannabinoid 1 Receptor Availability in Cannabis-Dependent Male Subjects After Abstinence From Cannabis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 60-67.	1.5	135
24	It's All in the Rhythm: The Role of Cannabinoids in Neural Oscillations and Psychosis. Biological Psychiatry, 2016, 79, 568-577.	1.3	54
25	GABA Deficits Enhance the Psychotomimetic Effects of Δ9-THC. Neuropsychopharmacology, 2015, 40, 2047-2056.	5.4	29
26	Δ9-THC Disrupts Gamma (Î3)-Band Neural Oscillations in Humans. Neuropsychopharmacology, 2015, 40, 2124-2134.	5.4	57
27	The Psychosis-like Effects of Δ9-Tetrahydrocannabinol Are Associated With Increased Cortical Noise in Healthy Humans. Biological Psychiatry, 2015, 78, 805-813.	1.3	44
28	Testing differences in the activity of event-related potential sources: Important implications for clinical researchers. Clinical Neurophysiology, 2015, 126, 215-218.	1.5	3
29	Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia. Current Pharmaceutical Design, 2014, 20, 5077-5092.	1.9	25