Neil V Rees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5134295/publications.pdf

Version: 2024-02-01

		76326	79698
126	5,976	40	73
papers	citations	h-index	g-index
128	128	128	5659
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Copper deposition on metallic and nonâ€metallic single particles via impact electrochemistry. Electrochimica Acta, 2022, 405, 139838.	5.2	6
2	Electrochemically Decorated Iridium Electrodes with WS _{3â^'} <i>_x</i> Toward Improved Oxygen Evolution Electrocatalyst Stability in Acidic Electrolytes. Advanced Sustainable Systems, 2021, 5, 2000284.	5.3	8
3	Magnetically modified electrocatalysts for oxygen evolution reaction in proton exchange membrane (PEM) water electrolyzers. International Journal of Hydrogen Energy, 2021, 46, 20825-20834.	7.1	15
4	Pt ₁₄₇ Nanoclusters Soft-Landed on WS ₂ Nanosheets for Catalysis and Energy Harvesting. ACS Applied Nano Materials, 2021, 4, 13140-13148.	5 . 0	4
5	Increased Stability of Palladiumâ€ridiumâ€Gold Electrocatalyst for the Hydrogen Oxidation Reaction in Polymer Electrolyte Membrane Fuel Cells. Electroanalysis, 2020, 32, 2893-2901.	2.9	2
6	Cisplatin adducts of DNA as precursors for nanostructured catalyst materials. Nanoscale Advances, 2020, 2, 4491-4497.	4.6	4
7	The electroreduction of oxygen in aprotic solvents. Journal of Electroanalytical Chemistry, 2020, 872, 113989.	3.8	2
8	Improving PEM water electrolyser's performance by magnetic field application. Applied Energy, 2020, 264, 114721.	10.1	28
9	Platinum and Palladium Bio-Synthesized Nanoparticles as Sustainable Fuel Cell Catalysts. Frontiers in Energy Research, 2019, 7, .	2.3	29
10	Computational study of mass transfer at surfaces structured with reactive nanocones. Applied Mathematical Modelling, 2019, 74, 373-386.	4.2	0
11	Benchmarking the Activity, Stability, and Inherent Electrochemistry of Amorphous Molybdenum Sulfide for Hydrogen Production. Advanced Energy Materials, 2019, 9, 1802614.	19.5	85
12	MoS2 and WS2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport. Applied Materials Today, 2018, 11, 70-81.	4.3	33
13	"Metal-free―electrocatalysis: Quaternary-doped graphene and the alkaline oxygen reduction reaction. Applied Catalysis A: General, 2018, 553, 107-116.	4.3	46
14	Hydrogen evolution enhancement of ultra-low loading, size-selected molybdenum sulfide nanoclusters by sulfur enrichment. Applied Catalysis B: Environmental, 2018, 235, 84-91.	20.2	56
15	Nanoparticle impacts in innovative electrochemistry. Current Opinion in Electrochemistry, 2018, 10, 31-36.	4.8	31
16	Progress towards the ideal core@shell nanoparticle for fuel cell electrocatalysis. Journal of Experimental Nanoscience, 2018, 13, 258-271.	2.4	8
17	The electrochemical reduction kinetics of oxygen in dimethylsulfoxide. Journal of Electroanalytical Chemistry, 2018, 829, 16-19.	3.8	5
18	Dual-doped graphene/perovskite bifunctional catalysts and the oxygen reduction reaction. Electrochemistry Communications, 2017, 84, 65-70.	4.7	14

#	Article	IF	CITATIONS
19	Electrochemical sulfidation of WS 2 nanoarrays: Strong dependence of hydrogen evolution activity on transition metal sulfide surface composition. Electrochemistry Communications, 2017, 81, 106-111.	4.7	18
20	Electrochemistry Fundamentals: Nanomaterials Evaluation and Fuel Cells. Nanostructure Science and Technology, $2016, 1-29$.	0.1	0
21	Effect of catalyst carbon supports on the oxygen reduction reaction in alkaline media: a comparative study. RSC Advances, 2016, 6, 94669-94681.	3.6	49
22	Enhancement of the Hydrogen Evolution Reaction from Ni-MoS ₂ Hybrid Nanoclusters. ACS Catalysis, 2016, 6, 6008-6017.	11.2	122
23	Biomanufacture of nano-Pd(0) by Escherichia coli and electrochemical activity of bio-Pd(0) made at the expense of H2 and formate as electron donors. Biotechnology Letters, 2016, 38, 1903-1910.	2.2	14
24	Nanoparticle electrochemistry. Physical Chemistry Chemical Physics, 2016, 18, 24812-24819.	2.8	48
25	Electrocatalytic regeneration of atmospherically aged MoS ₂ nanostructures via solution-phase sulfidation. RSC Advances, 2016, 6, 26689-26695.	3.6	5
26	Professor Richard Compton's 60 th Birthday. Electroanalysis, 2015, 27, 844-845.	2.9	0
27	Improving the design of gas diffusion layers for intermediate temperature polymer electrolyte fuel cells using a sensitivity analysis: A multiphysics approach. International Journal of Hydrogen Energy, 2015, 40, 16745-16759.	7.1	4
28	Modular construction of size-selected multiple-core Pt–TiO ₂ nanoclusters for electro-catalysis. Physical Chemistry Chemical Physics, 2015, 17, 28005-28009.	2.8	20
29	Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renewable and Sustainable Energy Reviews, 2015, 47, 540-551.	16.4	326
30	Electrochemical insight from nanoparticle collisions with electrodes: A mini-review. Electrochemistry Communications, 2014, 43, 83-86.	4.7	102
31	Nanoparticle catalysts for proton exchange membrane fuel cells: can surfactant effects be beneficial for electrocatalysis?. Physical Chemistry Chemical Physics, 2014, 16, 11435-11446.	2.8	32
32	Gas Diffusion Layer Materials and their Effect on Polymer Electrolyte Fuel Cell Performance – <i>Ex Situ</i> and <i>In Situ</i> Characterization. Fuel Cells, 2014, 14, 735-741.	2.4	24
33	Gold microelectrode ensembles: cheap, reusable and stable electrodes for the determination of arsenic (V) under aerobic conditions. International Journal of Environmental Analytical Chemistry, 2013, 93, 1105-1115.	3.3	16
34	Coulometric sizing of nanoparticles: Cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles. Nano Research, 2013, 6, 836-841.	10.4	87
35	Variable temperature study of electro-reduction of 3-nitrophenolate via cyclic and square wave voltammetry: Molecular insights into electron transfer processes based on the asymmetric Marcusâ \in "Hush model. Electrochimica Acta, 2013, 110, 772-779.	5. 2	9
36	The effect of near wall hindered diffusion on nanoparticle–electrode impacts: A computational model. Journal of Electroanalytical Chemistry, 2013, 691, 28-34.	3.8	16

#	Article	IF	CITATIONS
37	Direct electrochemical detection and sizing of silver nanoparticles in seawater media. Nanoscale, 2013, 5, 174-177.	5.6	88
38	Electrochemistry of nickel nanoparticles is controlled by surface oxide layers. Physical Chemistry Chemical Physics, 2013, 15, 761-763.	2.8	33
39	Easy fabrication of a vibrating foil electrode. Analytical Methods, 2012, 4, 1932.	2.7	O
40	Electrode-nanoparticle collisions: The measurement of the sticking coefficients of gold and nickel nanoparticles from aqueous solution onto a carbon electrode. Chemical Physics Letters, 2012, 551, 68-71.	2.6	23
41	Determining unknown concentrations of nanoparticles: the particle-impact electrochemistry of nickel and silver. RSC Advances, 2012, 2, 6879.	3.6	109
42	Particle-impact nanoelectrochemistry: a Fickian model for nanoparticle transport. RSC Advances, 2012, 2, 12702.	3.6	13
43	Comparative evaluation of the symmetric and asymmetric Marcus–Hush formalisms of electrode kinetics – The one-electron oxidation of tetraphenylethylene in dichloromethane on platinum microdisk electrodes. Journal of Electroanalytical Chemistry, 2012, 677-680, 120-126.	3.8	14
44	Experimental comparison of the Butler–Volmer and Marcus–Hush–Chidsey formalisms of electrode kinetics: The reduction of cyclooctatetraene at mercury hemispherical electrodes via cyclic and square wave voltammetries. Journal of Electroanalytical Chemistry, 2012, 665, 38-44.	3.8	25
45	The electrochemical reduction of triphenylethylene in DMSO: a mechanistic study using mercury hemispherical microelectrodes. Journal of Electroanalytical Chemistry, 2012, 669, 14-20.	3.8	6
46	Electron transfer kinetics at single nanoparticles. Nano Today, 2012, 7, 174-179.	11.9	83
47	The electrochemical detection of tagged nanoparticles via particle-electrode collisions: nanoelectroanalysis beyond immobilisation. Chemical Communications, 2012, 48, 2510.	4.1	68
48	Molecular insights into electron transfer processes via variable temperature cyclic voltammetry. Application of the asymmetric Marcus–Hush model. Journal of Electroanalytical Chemistry, 2012, 685, 53-62.	3.8	16
49	A comparison of the Butler–Volmer and asymmetric Marcus–Hush models of electrode kinetics at the channel electrode. Journal of Electroanalytical Chemistry, 2012, 687, 79-83.	3.8	17
50	Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: A review. Electrochimica Acta, 2012, 84, 12-20.	5.2	150
51	Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chemical Communications, 2012, 48, 224-226.	4.1	144
52	Making contact: charge transfer during particle–electrode collisions. RSC Advances, 2012, 2, 379-384.	3.6	81
53	The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle–electrode impact electrochemistry. Physical Chemistry Chemical Physics, 2012, 14, 14354.	2.8	61
54	Nanoparticle–electrode impacts: the oxidation of copper nanoparticles has slow kinetics. Physical Chemistry Chemical Physics, 2012, 14, 13612.	2.8	94

#	Article	IF	CITATIONS
55	Determination of Sb(V) Using Differential Pulse Anodic Stripping Voltammetry at an Unmodified Edge Plane Pyrolytic Graphite Electrode. Electroanalysis, 2012, 24, 1306-1310.	2.9	7
56	Determination of Iron: Electrochemical Methods. Electroanalysis, 2012, 24, 1693-1702.	2.9	22
57	New Electrochemical Methods. Analytical Chemistry, 2012, 84, 669-684.	6.5	66
58	The non-destructive sizing of nanoparticles via particle–electrode collisions: Tag-redox coulometry (TRC). Chemical Physics Letters, 2012, 525-526, 69-71.	2.6	26
59	Nanoparticle–electrode collision studies: Brownian motion and the timescale of nanoparticle oxidation. Chemical Physics Letters, 2012, 528, 44-48.	2.6	33
60	Particle-impact voltammetry: The reduction of hydrogen peroxide at silver nanoparticles impacting a carbon electrode. Chemical Physics Letters, 2012, 531, 94-97.	2.6	33
61	Giving physical insight into the Butler–Volmer model of electrode kinetics: Application of asymmetric Marcus–Hush theory to the study of the electroreductions of 2-methyl-2-nitropropane, cyclooctatetraene and europium(III) on mercury microelectrodes. Journal of Electroanalytical Chemistry, 2012, 672, 45-52.	3.8	39
62	Towards the electrochemical quantification of the strength of garlic. Analyst, The, 2011, 136, 128-133.	3.5	10
63	In Situ Surface-Enhanced Raman Spectroscopic Studies and Electrochemical Reduction of \hat{l}_{\pm} -Ketoesters and Self Condensation Products at Platinum Surfaces. Journal of Physical Chemistry C, 2011, 115, 1163-1170.	3.1	22
64	Experimental Comparison of the Marcus–Hush and Butler–Volmer Descriptions of Electrode Kinetics. The One-Electron Oxidation of 9,10-Diphenylanthracene and One-Electron Reduction of 2-Nitropropane Studied at High-Speed Channel Microband Electrodes. Journal of Physical Chemistry C, 2011, 115, 14876-14882.	3.1	37
65	Electrochemical CO ₂ sequestration in ionic liquids; a perspective. Energy and Environmental Science, 2011, 4, 403-408.	30.8	84
66	Carbon-free energy: a review of ammonia- and hydrazine-based electrochemical fuel cells. Energy and Environmental Science, 2011, 4, 1255.	30.8	251
67	Enantioselective Hydrogenation of α-Ketoesters: An in Situ Surface-Enhanced Raman Spectroscopy (SERS) Study. Journal of Physical Chemistry C, 2011, 115, 21363-21372.	3.1	9
68	Nanoparticle–electrode collision processes: The electroplating of bulk cadmium on impacting silver nanoparticles. Chemical Physics Letters, 2011, 511, 183-186.	2.6	45
69	Nanoparticle–electrode collision processes: Investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles. Chemical Physics Letters, 2011, 514, 58-61.	2.6	15
70	Electrode–nanoparticle collisions: The measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode. Chemical Physics Letters, 2011, 514, 291-293.	2.6	36
71	Sustainable energy: a review of formic acid electrochemical fuel cells. Journal of Solid State Electrochemistry, 2011, 15, 2095-2100.	2.5	201
72	The Aggregation of Silver Nanoparticles in Aqueous Solution Investigated via Anodic Particle Coulometry. ChemPhysChem, 2011, 12, 1645-1647.	2.1	85

#	Article	IF	Citations
73	Nanoparticle–Electrode Collision Processes: The Underpotential deposition of Thallium on Silver Nanoparticles in Aqueous Solution. ChemPhysChem, 2011, 12, 2085-2087.	2.1	62
74	The Electrochemical Detection and Characterization of Silver Nanoparticles in Aqueous Solution. Angewandte Chemie - International Edition, 2011, 50, 4219-4221.	13.8	467
75	Enhanced Performance of Edgeâ€Plane Pyrolytic Graphite (EPPG) Electrodes over Glassy Carbon (GC) Electrodes in the Presence of Surfactants: Application to the Stripping Voltammetry of Copper. Electroanalysis, 2010, 22, 31-34.	2.9	19
76	Cyclic voltammetry in weakly supported media: The reduction of the cobaltocenium cation in acetonitrile – Comparison between theory and experiment. Journal of Electroanalytical Chemistry, 2010, 650, 135-142.	3.8	20
77	Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes?. Sensors and Actuators B: Chemical, 2010, 143, 539-546.	7.8	204
78	Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG). Sensors and Actuators B: Chemical, 2010, 144, 153-158.	7.8	158
79	Discharge cavitation during microwave electrochemistry at micrometre-sized electrodes. Chemical Communications, 2010, 46, 812-814.	4.1	10
80	Voltammetry Involving Amalgam Formation and Anodic Stripping in Weakly Supported Media: Theory and Experiment. Journal of Physical Chemistry C, 2010, 114, 7120-7127.	3.1	12
81	Quantitative Voltammetry in Weakly Supported Media. Chronoamperometric Studies on Diverse One Electron Redox Couples Containing Various Charged Species: Dissecting Diffusional and Migrational Contributions and Assessing the Breakdown of Electroneutrality. Journal of Physical Chemistry C, 2010. 114. 2227-2236.	3.1	37
82	Voltammetry as a probe of displacement. Chemical Communications, 2010, 46, 4238.	4.1	7
83	A Method for the Positioning and Tracking of Small Moving Particles. Angewandte Chemie - International Edition, 2009, 48, 2376-2378.	13.8	16
84	Reverse Pulse Voltammetry at spherical electrodes: Simultaneous determination of diffusion coefficients and formal potentials. Application to Room Temperature Ionic Liquids. Journal of Electroanalytical Chemistry, 2009, 634, 1-10.	3.8	19
85	Theoretical and experimental study of Differential Pulse Voltammetry at spherical electrodes: Measuring diffusion coefficients and formal potentials. Journal of Electroanalytical Chemistry, 2009, 634, 73-81.	3.8	40
86	A Photoelectrochemical Method for Determining the Kinematics of Moving Particles Using an Array of Individually Addressable Electrodes. Chemistry - an Asian Journal, 2009, 4, 1304-1308.	3.3	4
87	Uptake of Molecular Species by Spherical Droplets and Particles Monitored Voltammetrically. Journal of Physical Chemistry C, 2009, 113, 17215-17222.	3.1	9
88	Quantitative Voltammetry in Weakly Supported Media. Two Electron Transfer, Chronoamperometry of Electrodeposition and Stripping for Cadmium at Microhemispherical Mercury Electrodes. Journal of Physical Chemistry C, 2009, 113, 15320-15325.	3.1	13
89	Investigating the concept of diffusional independence. Potential step transients at nano- and micro-electrode arrays: theory and experiment. Analyst, The, 2009, 134, 343-348.	3.5	35
90	Magnetically moveable bimetallic (nickel/silver) nanoparticle/carbon nanotube composites for methanol oxidation. New Journal of Chemistry, 2009, 33, 107-111.	2.8	32

#	Article	IF	CITATIONS
91	How Much Supporting Electrolyte Is Required to Make a Cyclic Voltammetry Experiment Quantitatively "Diffusional� A Theoretical and Experimental Investigation. Journal of Physical Chemistry C, 2009, 113, 11157-11171.	3.1	155
92	Quantitative Voltammetry in Weakly Supported Media: Effects of the Applied Overpotential and Supporting Electrolyte Concentration on the One Electron Oxidation of Ferrocene in Acetonitrile. Journal of Physical Chemistry C, 2009, 113, 333-337.	3.1	38
93	A photoelectrochemical method for tracking the motion of Daphnia magna in water. Analyst, The, 2009, 134, 1786.	3.5	9
94	Modifying Glassy Carbon (GC) Electrodes to Confer Selectivity for the Voltammetric Detection of <scp>L</scp> â€Cysteine in the Presence of <scp>dl</scp> â€Homocysteine and Glutathione. Electroanalysis, 2008, 20, 916-918.	2.9	17
95	Potential step chronoamperometry at hemispherical mercury electrodes: The formation of thallium amalgams and the measurement of the diffusion coefficient of thallium in mercury. Journal of Electroanalytical Chemistry, 2008, 623, 165-169.	3.8	18
96	Design, fabrication, characterisation and application of nanoelectrode arrays. Chemical Physics Letters, 2008, 459, 1-17.	2.6	118
97	Hydrodynamic microelectrode voltammetry. Russian Journal of Electrochemistry, 2008, 44, 368-389.	0.9	21
98	Oxidation of Severalp-Phenylenediamines in Room Temperature Ionic Liquids:  Estimation of Transport and Electrode Kinetic Parameters. Journal of Physical Chemistry C, 2008, 112, 6993-7000.	3.1	32
99	Voltammetry in Weakly Supported Media: The Stripping of Thallium from a Hemispherical Amalgam Drop. Theory and Experiment. Journal of Physical Chemistry C, 2008, 112, 17175-17182.	3.1	28
100	Behavior of the Heterogeneous Electron-Transfer Rate Constants of Arenes and Substituted Anthracenes in Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2008, 112, 1650-1657.	3.1	39
101	Alkali Metal Reductions of Organic Molecules: Why Mediated Electron Transfer from Lithium Is Faster than Direct Reduction. Journal of the American Chemical Society, 2008, 130, 12256-12257.	13.7	17
102	Investigating the reactive sites and the anomalously large changes in surface pKa values of chemically modified carbon nanotubes of different morphologies. Journal of Materials Chemistry, 2007, 17, 2616.	6.7	52
103	Voltammetric sizing of particles: chronoamperometry of impact events in acoustically agitated particulate suspensions. Analyst, The, 2007, 132, 635.	3.5	13
104	Ultrafast Chronoamperometry of Single Impact Events in Acoustically Agitated Solid Particulate Suspensions. ChemPhysChem, 2006, 7, 807-811.	2.1	37
105	Marcus theory of outer-sphere heterogeneous electron transfer reactions: High precision steady-state measurements of the standard electrochemical rate constant for ferrocene derivatives in alkyl cyanide solvents. Journal of Electroanalytical Chemistry, 2005, 580, 78-86.	3.8	61
106	Experimental Validation of Marcus Theory for Outer-Sphere Heterogeneous Electron-Transfer Reactions: The Oxidation of Substituted 1,4-Phenylenediamines. ChemPhysChem, 2004, 5, 1234-1240.	2.1	24
107	Voltammetric characterisation of the radical anions of 4-nitrophenol, 2-cyanophenol and 4-cyanophenol in N,N-dimethylformamide electrogenerated at gold electrodes. Journal of Electroanalytical Chemistry, 2004, 561, 53-65.	3.8	32
108	An electrochemical study of the oxidation of 1,3,5-Tris[4-[(3-methylphenyl)phenylamino]phenyl]benzene. Journal of Electroanalytical Chemistry, 2004, 563, 191-202.	3.8	11

#	Article	IF	CITATIONS
109	Microwave enhanced electrochemistry: mass transport effects and steady state voltammetry in the sub-millisecond time domain. Journal of Electroanalytical Chemistry, 2004, 573, 175-182.	3.8	37
110	Selective electrochemical glycosylation by reactivity tuning 1. Organic and Biomolecular Chemistry, 2004, 2, 2195.	2.8	72
111	Marcus Theory for Outer-Sphere Heterogeneous Electron Transfer:Â Predicting Electron-Transfer Rates for Quinones. Journal of Physical Chemistry B, 2004, 108, 13047-13051.	2.6	32
112	Marcus Theory of Outer-Sphere Heterogeneous Electron Transfer Reactions:Â Dependence of the Standard Electrochemical Rate Constant on the Hydrodynamic Radius from High Precision Measurements of the Oxidation of Anthracene and Its Derivatives in Nonaqueous Solvents Using the High-Speed Channel Electrode. Journal of the American Chemical Society, 2004, 126, 6185-6192.	13.7	57
113	Ultrafast Chronoamperometry of Acoustically Agitated Solid Particulate Suspensions:  Nonfaradaic and Faradaic Processes at a Polycrystalline Gold Electrode. Journal of Physical Chemistry B, 2004, 108, 18391-18394.	2.6	49
114	Selective activation of glycosyl donors utilising electrochemical techniques: a study of the thermodynamic oxidation potentials of a range of chalcoglycosides. Organic and Biomolecular Chemistry, 2004, 2, 2188.	2.8	35
115	The Electrochemical Oxidation of N,N-Diethyl-p-Phenylenediamine in DMF and Analytical Applications. Part I: Mechanistic Study. Electroanalysis, 2003, 15, 949-960.	2.9	16
116	The application of fast scan cyclic voltammetry to the high speed channel electrode. Journal of Electroanalytical Chemistry, 2003, 542, 23-32.	3.8	22
117	Fast scan linear sweep voltammetry at a high-speed wall-tube electrode. Journal of Electroanalytical Chemistry, 2003, 557, 99-107.	3.8	8
118	Hydrodynamics and Mass Transport in Wall-Tube and Microjet Electrodes: An Experimental Evaluation of Current Theory. Journal of Physical Chemistry B, 2003, 107, 13649-13660.	2.6	12
119	Sonoelectrochemistry Understood via Nanosecond Voltammetry:Â Sono-emulsions and the Measurement of the Potential of Zero Charge of a Solid Electrode. Journal of Physical Chemistry B, 2002, 106, 5810-5813.	2.6	58
120	The electro-oxidation of N,N-dimethyl-p-toluidine in acetonitrile:. Journal of Electroanalytical Chemistry, 2002, 531, 33-42.	3.8	38
121	Photoelectrochemistry of bromonitrobenzenes: mechanism and photoelectrochemically-induced halex reactions. Journal of Electroanalytical Chemistry, 2002, 533, 33-70.	3.8	7
122	The high speed channel electrode applied to heterogeneous kinetics: the oxidation of 1,4-phenylenediamines and related species in acetonitrile. Journal of Electroanalytical Chemistry, 2002, 534, 151-161.	3.8	29
123	Sonoelectrochemistry in acoustically emulsified media. Journal of Electroanalytical Chemistry, 2002, 535, 41-47.	3.8	46
124	Voltammetry under high mass transport conditions. The application of the high speed channel electrode to the reduction of pentafluoronitrobenzene. Journal of Electroanalytical Chemistry, 1996, 411, 121-127.	3.8	28
125	Voltammetry Under High Mass Transport Conditions. The High Speed Channel Electrode and Heterogeneous Kinetics. The Journal of Physical Chemistry, 1995, 99, 14813-14818.	2.9	52
126	Voltammetry under High Mass Transport Conditions. A High Speed Channel Electrode for the Study of Ultrafast Kinetics. The Journal of Physical Chemistry, 1995, 99, 7096-7101.	2.9	56