Min-Suk Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/513409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets. Nature Communications, 2022, 13, 21.	12.8	31
2	Development of a Rapid Fluorescent Diagnostic System for Early Detection of the Highly Pathogenic Avian Influenza H5 Clade 2.3.4.4 Viruses in Chicken Stool. International Journal of Molecular Sciences, 2022, 23, 6301.	4.1	4
3	Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Virulence, 2022, 13, 990-1004.	4.4	1
4	Critical role of neutralizing antibody for SARS-CoV-2 reinfection and transmission. Emerging Microbes and Infections, 2021, 10, 152-160.	6.5	54
5	Zika virus lateral flow assays using reverse transcription-loop-mediated isothermal amplification. RSC Advances, 2021, 11, 17800-17808.	3.6	8
6	Molecular Signatures of Inflammatory Profile and B-Cell Function in Patients with Severe Fever with Thrombocytopenia Syndrome. MBio, 2021, 12, .	4.1	25
7	Baloxavir-oseltamivir combination therapy inhibits the emergence of resistant substitutions in influenza A virus PA gene in a mouse model. Antiviral Research, 2021, 193, 105126.	4.1	10
8	JEV-nanobarcode and colorimetric reverse transcription loop-mediated isothermal amplification (cRT-LAMP). Mikrochimica Acta, 2021, 188, 333.	5.0	6
9	Peptide Nucleic Acid (PNA)-Enhanced Specificity of a Dual-Target Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Assay for the Detection and Differentiation of SARS-CoV-2 from Related Viruses. Diagnostics, 2020, 10, 775.	2.6	6
10	<i>In Vitro</i> Profiling of Laninamivir-Resistant Substitutions in N3 to N9 Avian Influenza Virus Neuraminidase Subtypes and Their Association with <i>In Vivo</i> Susceptibility. Journal of Virology, 2020, 95, .	3.4	3
11	Antiviral Efficacies of FDA-Approved Drugs against SARS-CoV-2 Infection in Ferrets. MBio, 2020, 11, .	4.1	165
12	Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host and Microbe, 2020, 27, 704-709.e2.	11.0	815
13	Development of a Multiplex RT-qPCR for the Detection of Different Clades of Avian Influenza in Poultry. Viruses, 2020, 12, 100.	3.3	9
14	Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerging Microbes and Infections, 2020, 9, 998-1007.	6.5	267
15	Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. BMC Infectious Diseases, 2019, 19, 676.	2.9	144
16	Seroprevalence of Severe Fever with Thrombocytopenia Syndrome Phlebovirus in Domesticated Deer in South Korea. Virologica Sinica, 2019, 34, 501-507.	3.0	4
17	Development of a SFTSV DNA vaccine that confers complete protection against lethal infection in ferrets. Nature Communications, 2019, 10, 3836.	12.8	51
18	The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx. Microorganisms, 2019, 7, 156.	3.6	46

MIN-SUK SONG

#	Article	IF	CITATIONS
19	Development of a rapid, simple and efficient one-pot cloning method for a reverse genetics system of broad subtypes of influenza A virus. Scientific Reports, 2019, 9, 8318.	3.3	4
20	Bacterial Outer Membrane Vesicles Provide Broad-Spectrum Protection against Influenza Virus Infection via Recruitment and Activation of Macrophages. Journal of Innate Immunity, 2019, 11, 316-329.	3.8	24
21	Efficacy of A/H1N1/2009 split inactivated influenza A vaccine (GC1115) in mice and ferrets. Journal of Microbiology, 2019, 57, 163-169.	2.8	3
22	A Novel Neuraminidase-Dependent Hemagglutinin Cleavage Mechanism Enables the Systemic Spread of an H7N6 Avian Influenza Virus. MBio, 2019, 10, .	4.1	10
23	<i>In Vitro</i> and <i>In Vivo</i> Characterization of Novel Neuraminidase Substitutions in Influenza A(H1N1)pdm09 Virus Identified Using Laninamivir-Mediated <i>In Vitro</i> Selection. Journal of Virology, 2019, 93, .	3.4	6
24	Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis. Nature Microbiology, 2019, 4, 438-446.	13.3	66
25	Preclinical evaluation of the efficacy of an H5N8 vaccine candidate (IDCDC-RG43A) in mouse and ferret models for pandemic preparedness. Vaccine, 2019, 37, 484-493.	3.8	7
26	Comparison of the virulence and transmissibility of canine H3N2 influenza viruses and characterization of their canine adaptation factors. Emerging Microbes and Infections, 2018, 7, 1-14.	6.5	14
27	Virological and pathological characterization of an avian H1N1 influenza A virus. Archives of Virology, 2018, 163, 1153-1162.	2.1	6
28	Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016–2017 winter season. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	32
29	Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. Journal of Virology, 2018, 92, .	3.4	42
30	Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models. Virulence, 2018, 9, 133-148.	4.4	13
31	An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. Journal of General Virology, 2018, 99, 292-302.	2.9	11
32	Simple, Rapid and Sensitive Portable Molecular Diagnosis of SFTS Virus Using Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP). Journal of Microbiology and Biotechnology, 2018, 28, 1928-1936.	2.1	25
33	Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy. Journal of Virology, 2017, 91, .	3.4	18
34	Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse. Scientific Reports, 2017, 7, 40667.	3.3	13
35	Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea. Infection, Genetics and Evolution, 2017, 53, 56-67.	2.3	23
36	Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses. Journal of Virology, 2017, 91, .	3.4	10

MIN-SUK SONG

#	Article	IF	CITATIONS
37	The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents. Clinical and Experimental Vaccine Research, 2017, 6, 83.	2.2	5
38	Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. International Journal of Molecular Sciences, 2017, 18, 2706.	4.1	29
39	Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016. Eurosurveillance, 2017, 22, .	7.0	44
40	Eyedrop Vaccination Induced Systemic and Mucosal Immunity against Influenza Virus in Ferrets. PLoS ONE, 2016, 11, e0157634.	2.5	5
41	Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus. Virology, 2016, 498, 36-43.	2.4	16
42	Genetic diversity and pathogenic potential of low pathogenic H7 avian influenza viruses isolated from wild migratory birds in Korea. Infection, Genetics and Evolution, 2016, 45, 268-284.	2.3	10
43	Genetic characteristics of highly pathogenic H5N8 avian influenza viruses isolated from migratory wild birds in South Korea during 2014-2015. Archives of Virology, 2016, 161, 2749-2764.	2.1	11
44	Correlation Between the Interval of Influenza Virus Infectivity and Results of Diagnostic Assays in a Ferret Model. Journal of Infectious Diseases, 2016, 213, 407-410.	4.0	21
45	Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3669-3674.	7.1	51
46	Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses. Journal of Virology, 2016, 90, 616-623.	3.4	4
47	One-Pot Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) for Detecting MERS-CoV. Frontiers in Microbiology, 2016, 7, 2166.	3.5	99
48	Mouse adaptation of influenza B virus increases replication in the upper respiratory tract and results in droplet transmissibility in ferrets. Scientific Reports, 2015, 5, 15940.	3.3	20
49	Molecular characterization of mammalian-adapted Korean-type avian H9N2 virus and evaluation of its virulence in mice. Journal of Microbiology, 2015, 53, 570-577.	2.8	15
50	Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nature Communications, 2015, 6, 6553.	12.8	90
51	Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene. Archives of Virology, 2015, 160, 1729-1740.	2.1	16
52	Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources. Infection, Genetics and Evolution, 2015, 34, 378-393.	2.3	11
53	Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses. Journal of Virology, 2015, 89, 10891-10900.	3.4	43
54	Profiling and Characterization of Influenza Virus N1 Strains Potentially Resistant to Multiple Neuraminidase Inhibitors. Journal of Virology, 2015, 89, 287-299.	3.4	54

MIN-SUK SONG

#	Article	IF	CITATIONS
55	Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade. Journal of General Virology, 2014, 95, 1444-1463.	2.9	46
56	Characterization of an H4N2 influenza virus from Quails with a multibasic motif in the hemagglutinin cleavage site. Virology, 2014, 468-470, 72-80.	2.4	14
57	Prokaryote-expressed M2e protein improves H9N2 influenza vaccine efficacy and protection against lethal influenza a virus in mice. Virology Journal, 2013, 10, 104.	3.4	21
58	Early Regulation of Viral Infection Reduces Inflammation and Rescues Mx-Positive Mice from Lethal Avian Influenza Infection. American Journal of Pathology, 2013, 182, 1308-1321.	3.8	11
59	Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production. Journal of General Virology, 2013, 94, 1230-1235.	2.9	20
60	The Homologous Tripartite Viral RNA Polymerase of A/Swine/Korea/CT1204/2009(H1N2) Influenza Virus Synergistically Drives Efficient Replication and Promotes Respiratory Droplet Transmission in Ferrets. Journal of Virology, 2013, 87, 10552-10562.	3.4	8
61	Evaluation of the efficacy of a pre-pandemic H5N1 vaccine (MG1109) in mouse and ferret models. Journal of Microbiology, 2012, 50, 478-488.	2.8	4
62	Complete protection against a H5N2 avian influenza virus by a DNA vaccine expressing a fusion protein of H1N1 HA and M2e. Vaccine, 2011, 29, 5481-5487.	3.8	24
63	Virulence of pandemic (H1N1) 2009 influenza A polymerase reassortant viruses. Virulence, 2011, 2, 422-426.	4.4	6
64	Virulence and Genetic Compatibility of Polymerase Reassortant Viruses Derived from the Pandemic (H1N1) 2009 Influenza Virus and Circulating Influenza A Viruses. Journal of Virology, 2011, 85, 6275-6286.	3.4	51
65	Sublingual Immunization with M2-Based Vaccine Induces Broad Protective Immunity against Influenza. PLoS ONE, 2011, 6, e27953.	2.5	66
66	Evidence of Human-to-Swine Transmission of the Pandemic (H1N1) 2009 Influenza Virus in South Korea. Journal of Clinical Microbiology, 2010, 48, 3204-3211.	3.9	76
67	Genetic Characteristics and Phylogenetic Analysis of Influenza Type B Viruses Isolated from Nasopharyngeal Suction Samples of Korean Patients. Journal of Bacteriology and Virology, 2009, 39, 125.	0.1	2
68	The Polymerase Acidic Protein Gene of Influenza A Virus Contributes to Pathogenicity in a Mouse Model. Journal of Virology, 2009, 83, 12325-12335.	3.4	149
69	Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge. Virology, 2009, 395, 182-189.	2.4	37
70	Investigation of the biological indicator for vaccine efficacy against highly pathogenic avian influenza (HPAI) H5N1 virus challenge in mice and ferrets. Vaccine, 2009, 27, 3145-3152.	3.8	20
71	Ecology of H3 avian influenza viruses in Korea and assessment of their pathogenic potentials. Journal of General Virology, 2008, 89, 949-957.	2.9	42
72	Continuing evolution of H9 influenza viruses in Korean poultry. Virology, 2007, 359, 313-323.	2.4	106