Kiyotaka Sasagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5133021/publications.pdf

Version: 2024-02-01

226 papers 2,015 citations

257450 24 h-index 330143 37 g-index

228 all docs

228 docs citations

times ranked

228

1320 citing authors

#	Article	IF	CITATIONS
1	Lensless dual-color fluorescence imaging device using hybrid filter. Japanese Journal of Applied Physics, 2022, 61, SC1020.	1.5	6
2	Polarization Image Sensor for Highly Sensitive Polarization Modulation Imaging Based on Stacked Polarizers. IEEE Transactions on Electron Devices, 2022, 69, 2924-2931.	3.0	13
3	Investigating the Influence of GABA Neurons on Dopamine Neurons in the Ventral Tegmental Area Using Optogenetic Techniques. International Journal of Molecular Sciences, 2022, 23, 1114.	4.1	6
4	Optical Biosensors: Implantable Multimodal Devices in Freely Moving Rodents., 2022,, 143-157.		0
5	[Invited Paper] Near-infrared Colorized Imaging Technologies and Their Fundus Camera Applications. ITE Transactions on Media Technology and Applications, 2022, 10, 59-68.	0.5	1
6	Modular head-mounted cortical imaging device for chronic monitoring of intrinsic signals in mice. Journal of Biomedical Optics, 2022, 27, .	2.6	4
7	Enhancing infrared color reproducibility through multispectral image processing using RGB and three infrared channels. Optical Engineering, 2022, 61, .	1.0	O
8	Establishment of meteoropathy model mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 1-O-C1-1.	0.0	1
9	Micro-LED Array-Based Photo-Stimulation Devices for Optogenetics in Rat and Macaque Monkey Brains. IEEE Access, 2021, 9, 127937-127949.	4.2	11
10	CMOS-Based Neural Interface Device for Optogenetics. Advances in Experimental Medicine and Biology, 2021, 1293, 585-600.	1.6	1
11	Optical Powering Platform for Ultra-Small Implantable Devices. IEEJ Transactions on Sensors and Micromachines, 2021, 141, 63-70.	0.1	O
12	Near-infrared fundus camera with a patterned interference filter for the retinal scattering detection. Japanese Journal of Applied Physics, 2021, 60, SBBL07.	1.5	3
13	Image Sensor with Hybirid Emission Filter for <i>in-vivo</i> Fluorescent Imaging. IEEJ Transactions on Sensors and Micromachines, 2021, 141, 71-76.	0.1	2
14	Miniaturized LED light source with an excitation filter for fluorescent imaging. Japanese Journal of Applied Physics, 2021, 60, SBBG07.	1.5	4
15	A polarisationâ€analysing CMOS image sensor for sensitive polarisation modulation detection. Electronics Letters, 2021, 57, 472-474.	1.0	9
16	Wearable and Battery-Free Health-Monitoring Devices With Optical Power Transfer. IEEE Sensors Journal, 2021, 21, 9402-9412.	4.7	14
17	Image sensor with hybrid emission filter for in vivo fluorescent imaging. Electronics and Communications in Japan, 2021, 104, e12313.	0.5	1
18	Simultaneous CMOS-Based Imaging of Calcium Signaling of the Central Amygdala and the Dorsal Raphe Nucleus During Nociception in Freely Moving Mice. Frontiers in Neuroscience, 2021, 15, 667708.	2.8	10

#	Article	IF	Citations
19	Randles Circuit Model for Characterizing a Porous Stimulating Electrode of the Retinal Prosthesis. IEEJ Transactions on Sensors and Micromachines, 2021, 141, 134-140.	0.1	2
20	Self-Reset Image Sensor With a Signal-to-Noise Ratio Over 70 dB and Its Application to Brain Surface Imaging. Frontiers in Neuroscience, 2021, 15, 667932.	2.8	5
21	Randles circuit model for characterizing a porous stimulating electrode of the retinal prosthesis. Electronics and Communications in Japan, 2021, 104, e12324.	0.5	О
22	AC power supply circuit architecture for a miniaturised retinal prosthesis device. Journal of Engineering, 2021, 2021, 546-551.	1.1	0
23	Honeycomb-type retinal device using chemically derived iridium oxide biointerfaces. AIP Advances, 2021, 11 , .	1.3	4
24	Comparison of the effects of Goreisan and loxoprofen on cerebral blood flow dynamics in meteoropathy model mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 3-P1-07.	0.0	1
25	Dual-color lensless fluorescence imaging by using a notch interference filter and absorption filters. , 2021, , .		2
26	Ultrasmall compact CMOS imaging system for bioluminescence reporter-based live gene expression analysis. Journal of Biomedical Optics, 2021, 26, .	2.6	2
27	Implantable CMOS image sensor with a neural amplifier for simultaneous recording of optical and electrophysiological signals. , 2021, , .		3
28	Photoactivatable oncolytic adenovirus for optogenetic cancer therapy. Cell Death and Disease, 2020, 11, 570.	6.3	12
29	Miniaturized CMOS imaging device for implantable applications. , 2020, , .		0
30	Implantable Fluorescent CMOS Imaging Device. , 2020, , .		0
31	Fe ₂ O ₃ /MWCNTs modified microdialysis electrode for dopamine detection. Materials Research Express, 2020, 7, 015701.	1.6	9
32	Needle-Type Imager Sensor With Band-Pass Composite Emission Filter and Parallel Fiber-Coupled Laser Excitation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1082-1091.	5.4	17
33	Fabrication of thin composite emission filter for high-performance lens-free fluorescent imager. , 2020, , .		1
34	Image refocusing of miniature CMOS image sensor with angle-selective pixels., 2020,,.		0
35	Spatial Resolution Improvement of Lensless Fluorescence Imaging Device with Hybrid Emission Filter. , 2020, , .		0
36	Implantable CMOS Fluorescent Imaging Devices. Brain Informatics and Health, 2020, , 129-145.	0.4	0

3

#	Article	IF	Citations
37	An implantable light source for in-vivo fluorescence image sensor. , 2020, , .		О
38	A Thin Composite Emission Filter and Fiber Coupled Laser Excitation for Implantable Fluorescence Imager Application. , $2019, , .$		1
39	Wide field-of-view lensless fluorescence imaging device with hybrid bandpass emission filter. AIP Advances, 2019, 9, .	1.3	22
40	Implantable CMOS image sensor with incidentâ€angleâ€selective pixels. Electronics Letters, 2019, 55, 729-731.	1.0	19
41	Live Demonstration: Lensless Highly Sensitive Fluorescence Imaging. , 2019, , .		0
42	Multispectral Near-infrared Imaging Technologies for Nonmydriatic Fundus Camera., 2019, , .		6
43	Propranolol prevents cerebral blood flow changes and pain-related behaviors in migraine model mice. Biochemical and Biophysical Research Communications, 2019, 508, 445-450.	2.1	7
44	Chronic brain blood-flow imaging device for a behavioral experiment using mice. Biomedical Optics Express, 2019, 10, 1557.	2.9	7
45	Lens-free Dual-color Fluorescent CMOS Image Sensor for F?rster Resonance Energy Transfer Imaging. Sensors and Materials, 2019, 31, 2579.	0.5	9
46	Propranolol prevents changes in cerebral blood flow and pain-related behaviors in migraine model mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-P-043.	0.0	0
47	Development of Ultra-small Implantable Optogenetic Stimulator. Seibutsu Butsuri, 2019, 59, 156-160.	0.1	0
48	looking within – implantable image sensors. Electronics Letters, 2019, 55, 718-718.	1.0	0
49	Fe and Co-doped (Ba, Ca)TiO3 Perovskite as Potential Electrocatalysts for Glutamate Sensing. Engineering Journal, 2019, 23, 265-278.	1.0	2
50	1. Trends in Special Imaging Technologies. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73, 237-242.	0.1	0
51	CMOS-based optical energy harvesting circuit for biomedical and Internet of Things devices. Japanese Journal of Applied Physics, 2018, 57, 04FM05.	1.5	10
52	An Energy-Efficient CMOS Biophotometry Sensor With Incremental DT-â^Î" ADC Conversion. , 2018, , .		3
53	$1\ \text{mm}3\text{-sized}$ optical neural stimulator based on CMOS integrated photovoltaic power receiver. AIP Advances, 2018, 8, .	1.3	46
54	Next-generation Fundus Camera with Full Color Image Acquisition in 0-lx Visible Light by 1.12-micron Square Pixel, 4K, 30-fps BSI CMOS Image Sensor with Advanced NIR Multi-spectral Imaging System. , 2018, , .		7

4

#	Article	IF	CITATIONS
55	A 17-bit 104-dB-DR High-Precision Low-Power CMOS Fluorescence Biosensor With Extended Counting ADC and Noise Cancellation. , $2018, , .$		4
56	Performance improvement and in vivo demonstration of a sophisticated retinal stimulator using smart electrodes with built-in CMOS microchips. Japanese Journal of Applied Physics, 2018, 57, 1002B3.	1.5	4
57	Highly sensitive lens-free fluorescence imaging device enabled by a complementary combination of interference and absorption filters. Biomedical Optics Express, 2018, 9, 4329.	2.9	47
58	Compact Lensless Fluorescence Counting System for Single Molecular Assay. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1177-1185.	4.0	2
59	Live Demonstration: IoT micronode with optical ID transmission capability operated by optical energy harvesting. , 2018, , .		0
60	Live Demonstration: An Energy-Efficient CMOS Biophotometry Sensor Interface. , 2018, , .		1
61	Functional Validation of Intelligent Retinal Stimulator Using Microchip-embedded Smart Electrode. Sensors and Materials, 2018, , 167.	0.5	4
62	Electrochemical Evaluation of Geometrical Effect and Three-dimensionalized Effect of Iridium Oxide Electrodes Used for Retinal Stimulation. Sensors and Materials, 2018, , 213.	0.5	4
63	Small and Compact <i>ln-vivo</i> FRET Image Sensor – Fabrication and Development using CMOS Technology. , 2018, , .		0
64	CMOS-integrated optical power transfer for an ultra-small wireless implantable devices. , 2018, , .		0
65	Design Optimization of CMOS Control Circuit for Integrated Photovoltaic Power Transfer. Sensors and Materials, 2018, 30, 2343.	0.5	2
66	Implantable optogenetic device with CMOS IC technology for simultaneous optical measurement and stimulation. Japanese Journal of Applied Physics, 2017, 56, 057001.	1.5	7
67	On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips. AIP Advances, 2017, 7, 095213.	1.3	22
68	Implantable Microimaging Device for Observing Brain Activities of Rodents. Proceedings of the IEEE, 2017, 105, 158-166.	21.3	35
69	A high-precision CMOS biophotometry sensor with noise cancellation and two-step A/D conversion. , 2017, , .		12
70	Fluorescence imaging device with an ultra-thin micro-LED. , 2017, , .		0
71	Fabrication and in vivo demonstration of microchip-embedded smart electrode device for neural stimulation in retinal prosthesis. , 2017 , , .		6
72	CMOS-based opto-electric neural interface devices for optogenetics. , 2017, , .		0

#	Article	lF	Citations
73	Parylene-based flexible imaging device for physiological measurement of rodent brain. , 2017, , .		О
74	Implantable microâ€sized image sensor for data transmission with intraâ€vital optical communication. Journal of Engineering, 2017, 2017, 4-6.	1.1	2
75	Stimulator Design of Retinal Prosthesis. IEICE Transactions on Electronics, 2017, E100.C, 523-528.	0.6	8
76	CMOS-based Opical Energy Harvesting Circuit for Implantable and IoT Devices. , 2017, , .		0
77	Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication. Japanese Journal of Applied Physics, 2016, 55, 04EM03.	1.5	9
78	Neural stimulators for retinal prosthesis embedded with CMOS microchips. , 2016, , .		2
79	"Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging― Scientific Reports, 2016, 6, 21247.	3.3	20
80	Implantable micro-optical semiconductor devices for optical theranostics in deep tissue. Applied Physics Express, 2016, 9, 047001.	2.4	17
81	Hemodynamic imaging using an implantable self-reset image sensor. , 2016, , .		1
82	Compact lensless digital counting system for fluorescent micro-reaction-chamber array. , 2016, , .		1
83	Implantable self-reset CMOS image sensor and its application to hemodynamic response detection in living mouse brain. Japanese Journal of Applied Physics, 2016, 55, 04EM02.	1.5	20
84	In Vitro Long-Term Performance Evaluation and Improvement in the Response Time of CMOS-Based Implantable Glucose Sensors. IEEE Design and Test, 2016, 33, 37-48.	1.2	7
85	CMOS-Based Optoelectronic On-Chip Neural Interface Device. IEICE Transactions on Electronics, 2016, E99.C, 165-172.	0.6	4
86	On-chip fluorescence detection system with high-density microchamber array based on CMOS image sensor. , 2016, , .		2
87	CMOS-based opto-electronic neural interface devices for optogenetics. , 2016, 2016, 6319-6322.		2
88	Implantable imaging device for brain functional imaging system using flavoprotein fluorescence. Japanese Journal of Applied Physics, 2016, 55, 03DF02.	1.5	20
89	Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay. Japanese Journal of Applied Physics, 2016, 55, 03DF03.	1.5	10
90	An Implantable CMOS Image Sensor With Self-Reset Pixels for Functional Brain Imaging. IEEE Transactions on Electron Devices, 2016, 63, 215-222.	3.0	29

#	Article	IF	CITATIONS
91	High coupling efficiency contact imaging system having micro light pipe array for a digital enzyme-linked immunosorbent assay., 2015,,.		3
92	Intrinsic signal imaging of brain function using a small implantable CMOS imaging device. Japanese Journal of Applied Physics, 2015, 54, 04DL10.	1.5	17
93	Fabrication and functional demonstration of a smart electrode with a built-in CMOS microchip for neural stimulation of a retinal prosthesis., 2015, 2015, 3355-8.		4
94	CMOS-based on-chip neural interface devices for optogenetics., 2015,,.		0
95	CMOSâ€based implantable glucose monitoring device with improved performance and reduced invasiveness. Electronics Letters, 2015, 51, 738-740.	1.0	2
96	Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue. Biomedical Optics Express, 2015, 6, 1553.	2.9	29
97	Fluorescence imaging under background light with a selfâ€reset complementary metal–oxide—semiconductor image sensor. Journal of Engineering, 2015, 2015, 328-330.	1.1	4
98	CMOS-Based Implantable Glucose Monitoring Device with Glucose-Responsive Fluorescent Hydrogel., 2015,,.		0
99	CMOS-Based Neural Interface Device for Optogenetics. , 2015, , 375-389.		0
100	Implantable semiconductor imaging devices for in vivo optical imaging of brain., 2015,,.		0
101	A CMOS image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay. Japanese Journal of Applied Physics, 2014, 53, 04EL02.	1.5	18
102	Digital signal transmission from fully implantable CMOS image sensor in simulated body environment. Electronics Letters, 2014, 50, 851-853.	1.0	2
103	CMOS sensorâ€based palmâ€sized inâ€line optical analysis device for microchemistry systems. Electronics Letters, 2014, 50, 1222-1224.	1.0	1
104	Demonstration of implantable CMOS image sensors for functional brain imaging. , 2014, , .		1
105	An implantable image sensor with self-reset function for brain imaging. , 2014, , .		1
106	An implantable green fluorescence imaging device using absorption filters with high excitation light rejection ratio. , 2014 , , .		3
107	CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel. Biomedical Optics Express, 2014, 5, 3859.	2.9	36
108	An implantable micro imaging device for molecular imaging in a brain of freely-moving mouse. , 2014, , .		1

#	Article	IF	Citations
109	On-chip polarizer on image sensor using advanced CMOS technology. , 2014, , .		1
110	An implantable CMOS device for blood-flow imaging during experiments on freely moving rats. Japanese Journal of Applied Physics, 2014, 53, 04EL05.	1.5	41
111	Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system. Biosensors and Bioelectronics, 2014, 53, 31-36.	10.1	13
112	Body channel digital pulse transmission for biometric measurement by fully implantable CMOS image sensor. , 2014, , .		0
113	Noise performance of an implantable self-reset CMOS image sensor. , 2014, , .		0
114	Performance improvement and functionalization of an electrode array for retinal prosthesis by iridium oxide coating and introduction of smart-wiring technology using CMOS microchips. Sensors and Actuators A: Physical, 2014, 211, 27-37.	4.1	15
115	Implantable CMOS imaging device with absorption filters for green fluorescence imaging. Proceedings of SPIE, 2014, , .	0.8	9
116	Improvement of Stimulus Performance by Surface Coating of Stimulus Electrodes for Retinal Prosthesis. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2014, 65, 257-261.	0.2	0
117	Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay. , 2014, , .		8
118	[Paper] Demonstrations of Polarization Imaging Capability and Novel Functionality of Polarization-Analyzing CMOS Image Sensor with 65 nm Standard CMOS Process. ITE Transactions on Media Technology and Applications, 2014, 2, 131-138.	0.5	2
119	A CMOS microchip-based retinal prosthetic device for large numbers of stimulation in wide area. , 2013, , .		3
120	Lensless imaging device for digital counting of fluorescent micro-droplet chambers. , 2013, , .		1
121	Optoelectronics devices for biomedical applications. , 2013, , .		0
122	An in vitro demonstration of CMOS-based optoelectronic neural interface device for optogenetics., 2013, 2013, 799-802.		4
123	Implantable micro CMOS imaging devices for biomedical applications. , 2013, , .		1
124	Needle type CMOS imaging device for fluorescence imaging of deep brain activities with low invasiveness. , 2013, , .		2
125	A CMOS image sensor with low fixed pattern noise suitable for lensless observation system of digital enzyme-linked immunosorbent assay (ELISA). , 2013, , .		1
126	CMOS sensor-based miniaturised in-line dual-functional optical analyser for high-speed, in situ chirality monitoring. Sensors and Actuators B: Chemical, 2013, 176, 1032-1037.	7.8	3

#	Article	IF	Citations
127	Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology. Optics Express, 2013, 21, 11132.	3.4	49
128	Implantable image sensor based on intra-brain image transmission. , 2013, 2013, 1863-6.		3
129	Sputtering condition optimization of sputtered IrOx and TiN stimulus electrodes for retinal prosthesis. IEEJ Transactions on Electrical and Electronic Engineering, 2013, 8, 310-312.	1.4	14
130	Polarisation analysing complementary metalâ€oxide semiconductor image sensor in 65â€nm standard CMOS technology. Journal of Engineering, 2013, 2013, 45-47.	1.1	6
131	[Paper] A CMOS Optoelectronic Neural Interface Device Based on an Image Sensor with On-chip Light Stimulation and Extracellular Neural Signal Recording for Optogenetics. ITE Transactions on Media Technology and Applications, 2013, 1, 184-189.	0.5	5
132	CMOS on-chip bio-imaging sensor with integrated micro light source array for optogenetics. Electronics Letters, 2012, 48, 312.	1.0	24
133	Smart electrode array device with CMOS multi-chip architecture for neural interface. Electronics Letters, 2012, 48, 1328.	1.0	13
134	Complementary Metal–Oxide–Semiconductor Image Sensor with Microchamber Array for Fluorescent Bead Counting. Japanese Journal of Applied Physics, 2012, 51, 02BL01.	1.5	12
135	CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue. Optics Express, 2012, 20, 6097.	3.4	24
136	Baseband signal transmission experiment for intra-brain communication with implantable image sensor., 2012, 2012, 6011-4.		1
137	Optimization of Sputtering Condition of IrOx Thin Film Stimulation Electrode for Retinal Prosthesis Application. Journal of Physics: Conference Series, 2012, 352, 012005.	0.4	3
138	CMOS On-Chip Optoelectronic Neural Interface Device with Integrated Light Source for Optogenetics. Journal of Physics: Conference Series, 2012, 352, 012004.	0.4	4
139	On-chip metal wire grid polarizer for CMOS image sensor based on 65-nm technology. , 2012, , .		2
140	Dual-layer metal-grid polarizer for polarization image sensor in 65-nm CMOS technology. , 2012, , .		3
141	A micro imaging device for measuring neural actvities in the mouse deep brain with minimal invasiveness. , 2012, , .		3
142	A polarization analyzing CMOS image sensor with metal wire grid in 65-nm standard CMOS technology. , 2012, , .		1
143	A CMOS-based on-chip neural interface device equipped with integrated LED array for optogenetics. , 2012, 2012, 5146-9.		4
144	Image signal transmission through brain by an implantable micro-imager. , 2012, , .		0

#	Article	IF	Citations
145	Proposal and evaluation of intra-body sensing via sheet medium. , 2012, , .		O
146	Development of a CMOS-based implantable device for wide-area brain functional imaging. , 2012, , .		0
147	Novel implantable imaging system for enabling simultaneous multiplanar and multipoint analysis for fluorescence potentiometry in the visual cortex. Biosensors and Bioelectronics, 2012, 38, 321-330.	10.1	33
148	Complementary Metal–Oxide–Semiconductor Image Sensor with Microchamber Array for Fluorescent Bead Counting. Japanese Journal of Applied Physics, 2012, 51, 02BL01.	1.5	12
149	Fabrication of a flexible neural interface device with CMOS-based smart electrodes. , 2011, , .		0
150	Micro CMOS image sensor for multi-area imaging. , 2011, , .		1
151	Functional neuroimaging by using an implantable CMOS multimodal device in a freely-moving mouse. , $2011, \ldots$		10
152	CMOS-based intelligent neural interface device for optogenetics. Neuroscience Research, 2011, 71, e307-e308.	1.9	0
153	CMOS Imaging Devices for Biomedical Applications. IEICE Transactions on Communications, 2011, E94.B, 2454-2460.	0.7	7
154	Planar Multielectrode Array Coupled Complementary Metal Oxide Semiconductor Image Sensor forIn vitroElectrophysiology. Japanese Journal of Applied Physics, 2011, 50, 04DL04.	1.5	0
155	Polarization Analyzing Image Sensor with On-Chip Metal Wire Grid Polarizer in 65-nm Standard Complementary Metal Oxide Semiconductor Process. Japanese Journal of Applied Physics, 2011, 50, 04DL01.	1.5	25
156	CMOS-based smart-electrode-type retinal stimulator with bullet-shaped bulk Pt electrodes., 2011, 2011, 6733-6.		5
157	Wireless intra-brain communication for image transmission through mouse brain., 2011, 2011, 2917-20.		10
158	Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications. Materials, 2011, 4, 84-102.	2.9	12
159	Polarization Analyzing Image Sensor with On-Chip Metal Wire Grid Polarizer in 65-nm Standard Complementary Metal Oxide Semiconductor Process. Japanese Journal of Applied Physics, 2011, 50, 04DL01.	1.5	8
160	Planar Multielectrode Array Coupled Complementary Metal Oxide Semiconductor Image Sensor for <i>In vitro</i> Electrophysiology. Japanese Journal of Applied Physics, 2011, 50, 04DL04.	1.5	2
161	Biomedical Devices based on Semiconductor Microelectronics Technologies. IEEJ Transactions on Sensors and Micromachines, 2011, 131, 404-408.	0.1	0
162	CMOS Imaging Device for Optical Imaging of Biological Activities. IEEJ Transactions on Electronics, Information and Systems, 2011, 131, 76-82.	0.2	0

#	Article	IF	CITATIONS
163	Development of in situ Imaging Probe for Surgical Operation of Deep Brain Stimulation. IEEJ Transactions on Sensors and Micromachines, 2011, 131, 427-428.	0.1	0
164	Performance Improvements of Polarization-analyzing CMOS Image Sensor. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2011, 65, 367-371.	0.1	0
165	Complementary Metal Oxide Semiconductor Based Multimodal Sensor for In vivo Brain Function Imaging with a Function for Simultaneous Cell Stimulation. Japanese Journal of Applied Physics, 2010, 49, 04DL02.	1.5	8
166	Development and in vivo Demonstration of CMOS-Based Multichip Retinal Stimulator With Simultaneous Multisite Stimulation Capability. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4, 445-453.	4.0	30
167	A CMOS-based multichip flexible retinal stimulator for simultaneous multi-site stimulation. , 2010, 2010, 5883-6.		1
168	Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal–Oxide–Semiconductor Imaging Device. Japanese Journal of Applied Physics, 2010, 49, 117001.	1.5	23
169	Multimodal Complementary Metal–Oxide–Semiconductor Sensor Device for Imaging of Fluorescence and Electrical Potential in Deep Brain of Mouse. Japanese Journal of Applied Physics, 2010, 49, 01AG02.	1.5	25
170	Implantable Image Sensor with Light Guide Array Plate for Bioimaging. Japanese Journal of Applied Physics, 2010, 49, 04DL03.	1.5	11
171	Microfluid Ejection Device Based on Complementary Metal–Oxide–Semiconductor Technology as an Artificial Synapse. Japanese Journal of Applied Physics, 2010, 49, 01AG03.	1.5	0
172	Potentiometric dye imaging for cortical neurons with a novel measurement system using a implantable CMOS imaging device. Neuroscience Research, 2010, 68, e331.	1.9	0
173	Real-time visualization of electromagnetic waves propagating in air using live electro-optic imaging technique. Optics Express, 2010, 18, 10029.	3.4	4
174	Live Electrooptic Imaging of \$W\$-Band Waves. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 3011-3021.	4.6	25
175	W-band Photonic Signal Generation Based on Frequency Doubling. , 2010, , .		0
176	Light-controlled retinal stimulation on rabbit using CMOS-based flexible multi-chip stimulator., 2009, 2009, 646-9.		2
177	Phase-evolving real-time visualization of 100 GHz traveling waves. , 2009, , .		3
178	CMOS image sensor for recording of intrinsic-optical-signal of the brain. , 2009, , .		1
179	Image and/or Movie Analyses of 100-GHz Traveling Waves on the Basis of Real-Time Observation With a Live Electrooptic Imaging Camera. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 3373-3379.	4.6	11
180	A multimodal sensing device for fluorescence imaging and electrical potential measurement of neural activities in a mouse deep brain., 2009, 2009, 5887-90.		0

#	Article	IF	CITATIONS
181	A CMOS-based chemical stimulator with microfluid ejection function toward an artificial synaptic device., 2009,,.		0
182	Highly Efficient Third Harmonic Generation in a Periodically Poled MgO:LiNbO ₃ Disk Resonator. Applied Physics Express, 2009, 2, 122401.	2.4	59
183	Microchamber Device Equipped with Complementary Metal Oxide Semiconductor Optical Polarization Analyzer Chip for Micro Total Analysis System. Japanese Journal of Applied Physics, 2009, 48, 04C192.	1.5	3
184	Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse. Japanese Journal of Applied Physics, 2009, 48, 04C195.	1.5	33
185	A Low-Voltage Complementary Metal Oxide Semiconductor Image Sensor Using Pulse-Width-Modulation Scheme for Biomedical Applications. Japanese Journal of Applied Physics, 2009, 48, 04C193.	1.5	0
186	Implantable CMOS Biomedical Devices. Sensors, 2009, 9, 9073-9093.	3.8	85
187	Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser. Electronics Letters, 2009, 45, 228.	1.0	50
188	CMOS-Based Multichip Networked Flexible Retinal Stimulator Designed for Image-Based Retinal Prosthesis. IEEE Transactions on Electron Devices, 2009, 56, 2577-2585.	3.0	57
189	CMOS-based flexible multi-site retinal stimulator toward retinal prosthesis technology., 2009,,.		1
190	Polarization-analyzing image sensor based on standard CMOS technology. , 2009, , .		1
191	Real-time digital signal processing for live electro-optic imaging. Optics Express, 2009, 17, 15641.	3.4	21
192	Polarization-analyzing CMOS image sensor using monolithically embedded polarizer for microchemistry systems. , 2009, , .		8
193	A CMOS sensor for in-vivo fluorescence and electrical imaging in a mouse brain. , 2009, , .		0
194	Polarization-Analyzing CMOS Image Sensor With Monolithically Embedded Polarizer for Microchemistry Systems. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3, 259-266.	4.0	49
195	Real-time in vivo molecular quantification for freely-moving mouse's hippocampus. Neuroscience Research, 2009, 65, S226.	1.9	0
196	Quadruple Frequency Photonic Signal Generation by Optical Frequency Doubling. , 2009, , .		0
197	Polarization-Analyzing Image Sensor for .MU.TAS Based on Standard CMOS Technology. IEEJ Transactions on Sensors and Micromachines, 2009, 129, 234-241.	0.1	0
198	Low-Noise and High-Frequency Resolution Electrooptic Sensing of RF Near-Fields Using an External Optical Modulator. Journal of Lightwave Technology, 2008, 26, 1242-1248.	4.6	14

#	Article	IF	Citations
199	Instantaneous Visualization of K-Band Electric Near-Fields by a Live Electrooptic Imaging System Based on Double Sideband Suppressed Carrier Modulation. Journal of Lightwave Technology, 2008, 26, 2782-2788.	4.6	19
200	W-band live electro-optic imaging system. , 2008, , .		6
201	Multi-channel measurement of RF complex refractive index by live electrooptic imaging camera. , 2008,		О
202	An implantable CMOS image sensor for monitoring deep brain activities of a freely moving mouse., 2008,,.		8
203	W-band photonic signal generation with carrier and unnecessary sidebands suppressed by second harmonic generation. , 2008, , .		3
204	V-band signal generation by photonic frequency doubling with periodically poled lithium niobate waveguide. , 2008, , .		1
205	Phase-resolved visualization of $100\mathrm{GHz}$ traveling electromagnetic waves by an EO imaging method. , $2008,$, .		4
206	$15~\mathrm{dB}$ cross loss modulation by cw pump injection of mW-class in 1.5-mm long nano-wire waveguide. , 2008, , .		0
207	Waveguide coupler for high-Q LiNbO <inf>3</inf> disk resonators. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
208	Performance Improvement of High-Extinction-Ratio LiNbO3 Optical Intensity Modulator by Means of Polarization Crosstalk Reduction., 2007,,.		1
209	Instantaneous Microwave Transmission Imaging of Aqueous Samples. , 2007, , .		5
210	High efficiency third harmonic generation in PPMgLN disk resonator., 2007,,.		2
211	Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 2782-2791.	4.6	52
212	Live Electro-Optic Imaging of Microwave Near-Fields via Ultra-Parallel Photonic Heterodyne. IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	10
213	Modulation depth enhancement for highly sensitive electro-optic RF near-field measurement. Electronics Letters, 2006, 42, 1357.	1.0	18
214	Sensitivity Enhancement Method for Electro-optic Sensor without Balanced Detection. , 2006, , .		0
215	10,000 parallel heterodyne system for instantaneous photonics-based acquisition of near-fields images over microwave devices/circuits. , 2006, , .		4
216	Real-time monitoring system of RF near-field distribution images on the basis of 64-channel parallel electro-optic data acquisition. IEICE Electronics Express, 2005, 2, 600-606.	0.8	34

#	Article	IF	CITATIONS
217	Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides. Optics Express, 2005, 13, 7298.	3.4	120
218	S-band Tm[sup 3+]-doped tellurite glass microsphere laser via a cascade process. Applied Physics Letters, 2004, 85, 4325.	3.3	46
219	Control of oscillation wavelength of a microsphere laser using a lambda/4-shifted grating. , 2004, , .		0
220	Nd3+-doped tellurite glass microsphere laser. , 2003, , .		1
221	Control of microsphere lasing wavelength using â°•4-shifted distributed feedback resonator. Electronics Letters, 2003, 39, 1817.	1.0	5
222	Nd-doped tellurite glass microsphere laser. Electronics Letters, 2002, 38, 1355.	1.0	27
223	Effects of optical polarization in reflection-mode near-field optical microscopy. , 0, , .		0
224	Sensitivity enhancement of electrooptic probing based on photonic downconversion by sideband management. , 0, , .		6
225	Lithium Nibate Disk Sensor Using Photonic Heterodyning. Applied Physics Express, 0, 2, 082201.	2.4	7
226	Zn-Doped TiO ₂ Powder Prepared by Solution Combustion Synthesis as Non-Enzymatic Sensor for Acetylcholine Detection. Key Engineering Materials, 0, 843, 84-89.	0.4	1