
Yuri A Ushkaryov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5130327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ECM–Receptor Regulatory Network and Its Prognostic Role in Colorectal Cancer. Frontiers in Genetics, 2021, 12, 782699.	2.3	29
2	Interrelation between miRNA and mRNA expression in HT-29 line cells under hypoxia. Bulletin of Russian State Medical University, 2020, , .	0.2	0
3	The Tim-3-Galectin-9 Pathway and Its Regulatory Mechanisms in Human Breast Cancer. Frontiers in Immunology, 2019, 10, 1594.	4.8	119
4	Câ€ŧerminal phosphorylation of latrophilinâ€1/ADGRL1 affects the interaction between its fragments. Annals of the New York Academy of Sciences, 2019, 1456, 122-143.	3.8	1
5	The expanding functional roles and signaling mechanisms of adhesion G protein–coupled receptors. Annals of the New York Academy of Sciences, 2019, 1456, 5-25.	3.8	16
6	Catching Latrophilin With Lasso: A Universal Mechanism for Axonal Attraction and Synapse Formation. Frontiers in Neuroscience, 2019, 13, 257.	2.8	10
7	Cortisol facilitates the immune escape of human acute myeloid leukemia cells by inducing latrophilin 1 expression. Cellular and Molecular Immunology, 2018, 15, 994-997.	10.5	9
8	Proteolytically released Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on axonal growth cones. ELife, 2018, 7, .	6.0	35
9	The Tim-3-galectin-9 Secretory Pathway is Involved in the Immune Escape of Human Acute Myeloid Leukemia Cells. EBioMedicine, 2017, 22, 44-57.	6.1	167
10	Expression of functional neuronal receptor latrophilin 1 in human acute myeloid leukaemia cells. Oncotarget, 2016, 7, 45575-45583.	1.8	15
11	The Mechanism of Regulated Release of Lasso/Teneurin-2. Frontiers in Molecular Neuroscience, 2016, 9, 59.	2.9	41
12	International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews, 2015, 67, 338-367.	16.0	392
13	Different transporter systems regulate extracellular GABA from vesicular and non-vesicular sources. Frontiers in Cellular Neuroscience, 2013, 7, 23.	3.7	54
14	Presynaptic neurotoxins: An expanding array of natural and modified molecules. Cell Calcium, 2012, 52, 234-240.	2.4	11
15	Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12113-12118.	7.1	223
16	SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18197-18201.	7.1	47
17	The Latrophilins, "Split-Personality―Receptors. Advances in Experimental Medicine and Biology, 2010, 706, 59-75.	1.6	48
18	Functional Cross-interaction of the Fragments Produced by the Cleavage of Distinct Adhesion G-protein-coupled Receptors. Journal of Biological Chemistry, 2009, 284, 6495-6506.	3.4	59

Yuri A Ushkaryov

#	Article	IF	CITATIONS
19	Activation of α-Latrotoxin Receptors in Neuromuscular Synapses Leads to a Prolonged Splash Acetylcholine Release. Bulletin of Experimental Biology and Medicine, 2009, 147, 701-703.	0.8	12
20	Prediction of Epitopes in Closely Related Proteins Using a New Algorithm. Bulletin of Experimental Biology and Medicine, 2009, 148, 869-873.	0.8	9
21	Penelope's web: using αâ€latrotoxin to untangle the mysteries of exocytosis. Journal of Neurochemistry, 2009, 111, 275-290.	3.9	60
22	$\hat{I}\pm$ -Latrotoxin and Its Receptors. Handbook of Experimental Pharmacology, 2008, , 171-206.	1.8	72
23	Insecticidal toxins from black widow spider venom. Toxicon, 2007, 49, 531-549.	1.6	94
24	Neurexin ll 2 and neuroligin are localized on opposite membranes in mature central synapses. Journal of Neurochemistry, 2007, 103, 1855-1863.	3.9	40
25	α-Latrotoxin Induces Exocytosis by Inhibition of Voltage-dependent K+ Channels and by Stimulation of L-type Ca2+ Channels via Latrophilin in β-Cells. Journal of Biological Chemistry, 2006, 281, 5522-5531.	3.4	27
26	α-Latrotoxin Modulates the Secretory Machinery via Receptor-Mediated Activation of Protein Kinase C. Traffic, 2005, 6, 756-765.	2.7	10
27	Properties of Synaptic Vesicle Pools in Mature Central Nerve Terminals. Journal of Biological Chemistry, 2005, 280, 37278-37288.	3.4	30
28	Latrophilin fragments behave as independent proteins that associate and signal on binding of LTXN4C. EMBO Journal, 2004, 23, 4423-4433.	7.8	105
29	The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon, 2004, 43, 527-542.	1.6	140
30	Mutant α-Latrotoxin (LTXN4C) Does Not Form Pores and Causes Secretion by Receptor Stimulation. Journal of Biological Chemistry, 2003, 278, 31058-31066.	3.4	40
31	Calpain inhibitors protect against axonal degeneration in a model of anti-ganglioside antibody-mediated motor nerve terminal injury. Brain, 2003, 126, 2497-2509.	7.6	81
32	The α-Latrotoxin Mutant LTX ^{N4C} Enhances Spontaneous and Evoked Transmitter Release in CA3 Pyramidal Neurons. Journal of Neuroscience, 2003, 23, 4044-4053.	3.6	51
33	α-Latrotoxin: from structure to some functions. Toxicon, 2002, 40, 1-5.	1.6	32
34	α-Latrotoxin, Acting via Two Ca2+-dependent Pathways, Triggers Exocytosis of Two Pools of Synaptic Vesicles. Journal of Biological Chemistry, 2001, 276, 44695-44703.	3.4	79
35	α-Latrotoxin forms calcium-permeable membrane pores via interactions with latrophilin or neurexin. European Journal of Neuroscience, 2000, 12, 3953-3962.	2.6	36
36	Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. Nature Structural Biology, 2000, 7, 48-53.	9.7	128

#	Article	IF	CITATIONS
37	Latrophilin, Neurexin, and Their Signaling-deficient Mutants Facilitate α-Latrotoxin Insertion into Membranes but Are Not Involved in Pore Formation. Journal of Biological Chemistry, 2000, 275, 41175-41183.	3.4	42
38	Tetramerisation of α-latrotoxin by divalent cations is responsible for toxin-induced non-vesicular release and contributes to the Ca2+-dependent vesicular exocytosis from synaptosomes. Biochimie, 2000, 82, 453-468.	2.6	41
39	Functional expression of \hat{I} ±-latrotoxin in baculovirus system. FEBS Letters, 1999, 442, 25-28.	2.8	30
40	The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution. FEBS Letters, 1999, 443, 348-352.	2.8	81
41	Norepinephrine exocytosis stimulated by α–latrotoxin requires both external and stored Ca 2+ and is mediated by latrophilin, G proteins and phospholipase C. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 379-386.	4.0	75
42	Vesicle exocytosis stimulated by α-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+. EMBO Journal, 1998, 17, 3909-3920.	7.8	119
43	Ca2+-independent insulin exocytosis induced by alpha -latrotoxin requires latrophilin, a G protein-coupled receptor. EMBO Journal, 1998, 17, 648-657.	7.8	76
44	Enhancement of spontaneous transmitter release at neonatal mouse neuromuscular junctions by the glial cell line-derived neurotrophic factor (GDNF). Journal of Physiology, 1998, 512, 635-641.	2.9	36
45	α-Latrotoxin Receptor, Latrophilin, Is a Novel Member of the Secretin Family of G Protein-coupled Receptors. Journal of Biological Chemistry, 1997, 272, 21504-21508.	3.4	267
46	Modification of rat brain Kv1.4 channel gating by association with accessory Kvl²1.1 and l²2.1 subunits. Pflugers Archiv European Journal of Physiology, 1997, 435, 43-54.	2.8	22
47	Isolation and Biochemical Characterization of a Ca2+-independent α-Latrotoxin-binding Protein. Journal of Biological Chemistry, 1996, 271, 23239-23245.	3.4	142
48	Cartography of neurexins: More than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron, 1995, 14, 497-507.	8.1	405
49	Conserved domain structure of beta-neurexins. Unusual cleaved signal sequences in receptor-like neuronal cell-surface proteins. Journal of Biological Chemistry, 1994, 269, 11987-92.	3.4	119
50	Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature, 1993, 364, 346-349.	27.8	489
51	Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6410-6414.	7.1	140
52	Polypeptide composition of the alpha-latrotoxin receptor. High affinity binding protein consists of a family of related high molecular weight polypeptides complexed to a low molecular weight protein. Journal of Biological Chemistry, 1993, 268, 1860-7.	3.4	36
53	Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science, 1992, 257, 50-56.	12.6	665
54	Neurexins. Cold Spring Harbor Symposia on Quantitative Biology, 1992, 57, 483-490.	1.1	20

Yuri A Ushkaryov

#	Article	IF	CITATIONS
55	Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature, 1991, 353, 65-68.	27.8	261
56	Structure of a novel InsP3 receptor. EMBO Journal, 1991, 10, 3199-206.	7.8	109
57	Family of human Na+ ,K+ -ATPase genes Structure of the putative regulatory region of the α+ -gene. FEBS Letters, 1989, 244, 481-483.	2.8	14
58	Human Na+, K+-ATPase genes. FEBS Letters, 1989, 257, 439-442.	2.8	5
59	Family of human Na+,K+-ATPase genes Structure of the gene for the catalytic subunit (αIII-form) and its relationship with structural features of the protein. FEBS Letters, 1988, 233, 87-94.	2.8	69
60	The family of human Na+ ,K+ -ATPase genes No less than five genes and/or pseudogenes related to the α-subunit. FEBS Letters, 1987, 217, 275-278.	2.8	77
61	The family of human Na+ K+ -ATPase genes. FEBS Letters, 1987, 213, 73-80.	2.8	30