Yi-Ming Kuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129940/publications.pdf

Version: 2024-02-01

516710 610901 37 634 16 24 h-index citations g-index papers 37 37 37 616 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of water quenching and SiO2 addition during vitrification of fly ash. Journal of Hazardous Materials, 2008, 152, 994-1001.	12.4	51
2	Preparation and adsorption properties of chitosan–poly(acrylic acid) nanoparticles for the removal of nickel ions. Journal of Applied Polymer Science, 2008, 107, 2333-2342.	2.6	47
3	Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. Journal of Environmental Management, 2013, 129, 586-592.	7.8	46
4	Metal behavior during vitrification of incinerator ash in a coke bed furnace. Journal of Hazardous Materials, 2004, 109, 79-84.	12.4	45
5	Preparation of fructose-mediated (polyethylene glycol/chitosan) membrane and adsorption of heavy metal ions. Journal of Applied Polymer Science, 2007, 105, 1480-1489.	2.6	33
6	Characterization of spent nickel–metal hydride batteries and a preliminary economic evaluation of the recovery processes. Journal of the Air and Waste Management Association, 2016, 66, 296-306.	1.9	33
7	Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace. Chemosphere, 2003, 51, 313-319.	8.2	29
8	Preparation and characterization of chitosanâ€coated hydroxyapatite nanoparticles as a promising nonâ€viral vector for gene delivery. Journal of Applied Polymer Science, 2011, 121, 3531-3540.	2.6	27
9	Effect of NaOH on the vitrification process of waste Ni–Cr sludge. Journal of Hazardous Materials, 2011, 185, 1522-1527.	12.4	24
10	Immobilization and encapsulation during vitrification of incineration ashes in a coke bed furnace. Journal of Hazardous Materials, 2006, 133, 75-78.	12.4	23
11	An alternative approach to recovering valuable metals from zinc phosphating sludge. Journal of Hazardous Materials, 2012, 201-202, 265-272.	12.4	23
12	Effect of cooling rate and basicity during vitrification of fly ash. Journal of Hazardous Materials, 2008, 152, 554-562.	12.4	21
13	Effect of SiO2 on Immobilization of Metals and Encapsulation of a Glass Network in Slag. Journal of the Air and Waste Management Association, 2003, 53, 1412-1416.	1.9	20
14	Vitrification for reclaiming spent alkaline batteries. Waste Management, 2009, 29, 2132-2139.	7.4	20
15	Ecological risk assessment of heavy metals sampled in sediments and water of the Houjing River, Taiwan. Environmental Earth Sciences, 2018, 77, 1.	2.7	20
16	Recycling of spent nickel–cadmium battery using a thermal separation process. Environmental Progress and Sustainable Energy, 2018, 37, 645-654.	2.3	17
17	Effect of Al2O3 mole fraction and cooling method on vitrification of an artificial hazardous material. Part 1: Variation of crystalline phases and slag structures. Journal of Hazardous Materials, 2009, 169, 626-634.	12.4	16
18	Chemical and physical properties of plasma slags containing various amorphous volume fractions. Journal of Hazardous Materials, 2009, 162, 469-475.	12.4	14

#	Article	IF	CITATIONS
19	Preparation of Cu2O nanowires by thermal oxidation-plasma reduction method. Applied Physics A: Materials Science and Processing, 2012, 108, 133-141.	2.3	14
20	Chitosan–poly(acrylic acid) nanofiber networks prepared by the doping induction of succinic acid and its ammoniaâ€response studies. Polymers for Advanced Technologies, 2008, 19, 1343-1352.	3.2	12
21	Two-stage plasma nitridation approach for rapidly synthesizing aluminum nitride powders. Journal of Materials Research, 2017, 32, 1279-1286.	2.6	11
22	An alternative approach for reusing slags from a plasma vitrification process. Journal of Hazardous Materials, 2008, 156, 442-447.	12.4	10
23	Stabilization of Residues Obtained from the Treatment of Laboratory Waste. Part 1—Treatment Path of Metals in a Plasma Melting System. Journal of the Air and Waste Management Association, 2010, 60, 429-438.	1.9	10
24	Encapsulation Behaviors of Metals in Slags Containing Various Amorphous Volume Fractions. Journal of the Air and Waste Management Association, 2007, 57, 820-827.	1.9	9
25	Effect of Al2O3 mole fraction and cooling method on vitrification of an artificial hazardous material. Part 2: Encapsulation of metals and resistance to acid. Journal of Hazardous Materials, 2009, 169, 635-642.	12.4	8
26	Characteristics and determinants of ambient volatile organic compounds in primary schools. Environmental Sciences: Processes and Impacts, 2016, 18, 1458-1468.	3.5	7
27	Hierarchically porous cobalt oxyhydroxide derived from <i>Morpho</i> â€butterfly wings: Preparation, characterization, and carbon monoxide detection at low temperatures. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 494-502.	1.8	6
28	Production and isolation of chitosan from <i>Aspergillus terreus</i> and application in tin(II) adsorption. Journal of Applied Polymer Science, 2014, 131, .	2.6	6
29	Preparation of High-Transparency, Superhydrophilic Visible Photo-Induced Photocatalytic Film via a Rapid Plasma-Modification Process. Coatings, 2021, 11, 784.	2.6	6
30	Effect of experimental parameters on the formation of chitosan–poly(acrylic acid) nanofibrous scaffolds and evaluation of their potential application as DNA carrier. Journal of Applied Polymer Science, 2010, 115, 1769-1780.	2.6	5
31	Evaluation of effect of reducing additives during vitrification via simulation and experiment. Journal of the Air and Waste Management Association, 2013, 63, 1182-1189.	1.9	5
32	An alternative approach to reclaim spent nickel–metal hydride batteries. Environmental Progress and Sustainable Energy, 2020, 39, e13433.	2.3	4
33	Color and COD Removal Using a Three-Dimensional Stacked Pt/Ti Screen Anode. Environmental Engineering Science, 2008, 25, 1009-1016.	1.6	3
34	Role of sodium ions in the vitrification process: Glass matrix modification, slag structure depolymerization, and influence of metal immobilization. Journal of the Air and Waste Management Association, 2014, 64, 774-784.	1.9	3
35	Characterization of the products attained from a thermal treatment of a mix of zinc–carbon and alkaline batteries. Environmental Technology (United Kingdom), 2016, 37, 1490-1500.	2.2	3
36	Stabilization of Residues Obtained from the Treatment of Laboratory Waste: Part 2—Transformation of Plasma Vitrified Slag into Composites. Journal of the Air and Waste Management Association, 2011, 61, 78-84.	1.9	2

#	Article	IF	CITATIONS
37	Evaluation of Thermal Treatments for Elutriated Mixed Incinerator Ashes. Part 1: Co-Incineration with Laboratory Waste. Aerosol and Air Quality Research, 2016, 16, 2278-2286.	2.1	1