
Marc Poirot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C)verlock 10	D Tf 50 662 To 1,430
4	Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 108-120.	2.4	649
5	Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 2010, 51, 2105-2120.	4.2	528
6	Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical Pharmacology, 2011, 81, 1171-1182.	4.4	471
7	Extracellular vesicles: lipids as key components of their biogenesis and functions. Journal of Lipid Research, 2018, 59, 1316-1324.	4.2	208
8	Cholesterol and Cancer, in the Balance. Science, 2014, 343, 1445-1446.	12.6	182
9	Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13520-13525.	7.1	109
10	Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties. Nature Communications, 2013, 4, 1840.	12.8	101
11	Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9346-E9355.	7.1	96
12	Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy, 2009, 5, 1066-1067.	9.1	86
13	Molecular Characterization of the Microsomal Tamoxifen Binding Site. Journal of Biological Chemistry, 2004, 279, 34048-34061.	3.4	84
14	Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nature Communications, 2017, 8, 1903.	12.8	84
15	MAPK14/p38 \hat{i}_{\pm} confers irinotecan resistance to TP53-defective cells by inducing survival autophagy. Autophagy, 2012, 8, 1098-1112.	9.1	79
16	Cholesterol metabolites exported from human brain. Steroids, 2015, 99, 189-193.	1.8	75
17	Ligands of the antiestrogen-binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death and Differentiation, 2009, 16, 1372-1384.	11.2	72
18	Tamoxifen Is a Potent Inhibitor of Cholesterol Esterification and Prevents the Formation of Foam Cells. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1165-1173.	2.5	71

Marc Poirot

#	Article	IF	CITATIONS
19	Cholesterol epoxide hydrolase and cancer. Current Opinion in Pharmacology, 2012, 12, 696-703.	3.5	71
20	Cholesterol-5,6-epoxides: Chemistry, biochemistry, metabolic fate and cancer. Biochimie, 2013, 95, 622-631.	2.6	69
21	Multiple Targeting by the Antitumor Drug Tamoxifen: A Structure-Activity Study. Anti-Cancer Agents in Medicinal Chemistry, 2004, 4, 491-508.	7.0	67
22	Cholesterol metabolism and cancer: the good, the bad and the ugly. Current Opinion in Pharmacology, 2012, 12, 673-676.	3.5	67
23	Signaling through cholesterol esterification: a new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion. Journal of Lipid Research, 2009, 50, 2203-2211.	4.2	64
24	Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie, 2014, 96, 67-74.	2.6	62
25	Microsomal antiestrogen-binding site ligands induce growth control and differentiation of human breast cancer cells through the modulation of cholesterol metabolism. Molecular Cancer Therapeutics, 2008, 7, 3707-3718.	4.1	56
26	5,6-Epoxy-cholesterols contribute to the anticancer pharmacology of Tamoxifen in breast cancer cells. Biochemical Pharmacology, 2013, 86, 175-189.	4.4	56
27	Synthesis and Biological Properties of New Stilbene Derivatives of Resveratrol as New Selective Aryl Hydrocarbon Modulators. Journal of Medicinal Chemistry, 2005, 48, 287-291.	6.4	55
28	Synthesis of New Alkylaminooxysterols with Potent Cell Differentiating Activities: Identification of Leads for the Treatment of Cancer and Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2009, 52, 7765-7777.	6.4	55
29	Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEBS ligands. Chemistry and Physics of Lipids, 2011, 164, 432-437.	3.2	51
30	Auraptene Is an Inhibitor of Cholesterol Esterification and a Modulator of Estrogen Receptors. Molecular Pharmacology, 2010, 78, 827-836.	2.3	50
31	Cholesterol metabolism and resistance to tamoxifen. Current Opinion in Pharmacology, 2012, 12, 683-689.	3.5	49
32	Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 210-218.	2.5	48
33	The tumor-suppressor cholesterol metabolite, dendrogenin A, is a new class of LXR modulator activating lethal autophagy in cancers. Biochemical Pharmacology, 2018, 153, 75-81.	4.4	48
34	The Effects of Cholesterol-Derived Oncometabolites on Nuclear Receptor Function in Cancer. Cancer Research, 2018, 78, 4803-4808.	0.9	45
35	Improving the efficacy of hormone therapy in breast cancer: The role of cholesterol metabolism in SERM-mediated autophagy, cell differentiation and death. Biochemical Pharmacology, 2017, 144, 18-28.	4.4	43
36	Surprising unreactivity of cholesterol-5,6-epoxides towards nucleophiles. Journal of Lipid Research, 2012, 53, 718-725.	4.2	36

#	Article	IF	CITATIONS
37	Identification of Two Tamoxifen Target Proteins by Photolabeling with 4-(2-Morpholinoethoxy)benzophenone. Bioconjugate Chemistry, 2002, 13, 766-772.	3.6	34
38	Further evidence for a biological role of anti-estrogen-binding sites in mediating the growth inhibitory action of diphenylmethane derivatives. Chemico-Biological Interactions, 1988, 66, 101-109.	4.0	29
39	Farnesyl-transferase inhibitor R115,777 enhances tamoxifen inhibition of MCF-7 cell growth through estrogen receptor dependent and independent pathways. Breast Cancer Research, 2005, 7, R1159-67.	5.0	29
40	Microsomal epoxide hydrolase of rat liver is a subunit of theanti-oestrogen-binding site. Biochemical Journal, 1998, 334, 107-112.	3.7	28
41	High tumorigenic potential of a constitutively active mutant of the cholecystokinin 2 receptor. Oncogene, 2003, 22, 6081-6089.	5.9	28
42	Molecular and Biochemical Analysis of the Estrogenic and Proliferative Properties of Vitamin E Compounds. Frontiers in Oncology, 2015, 5, 287.	2.8	28
43	Synthesis, binding and structure–affinity studies of new ligands for the microsomal anti-estrogen binding site (AEBS). Bioorganic and Medicinal Chemistry, 2000, 8, 2007-2016.	3.0	27
44	The 5,6â€epoxycholesterol metabolic pathway in breast cancer: Emergence of new pharmacological targets. British Journal of Pharmacology, 2021, 178, 3248-3260.	5.4	27
45	Antiestrogen-binding site ligands induce autophagy in myeloma cells that proceeds through alteration of cholesterol metabolism. Oncotarget, 2013, 4, 911-922.	1.8	27
46	Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data. Medical Physics, 2013, 40, 052501.	3.0	26
47	Structural similitudes between cytotoxic antiestrogen-binding site (AEBS) ligands and cytotoxic sigma receptor ligands. evidence for a relationship between cytotoxicity and affinity for AEBS or sigma-2 receptor but not for sigma-1 receptor. Biochemical Pharmacology, 1999, 58, 1927-1939.	4.4	25
48	Identification of Tyrosine 189 and Asparagine 358 of the Cholecystokinin 2 Receptor in Direct Interaction with the Crucial C-Terminal Amide of Cholecystokinin by Molecular Modeling, Site-Directed Mutagenesis, and Structure/Affinity Studies. Molecular Pharmacology, 2003, 63, 973-982.	2.3	25
49	Progesterone and a phospholipase inhibitor increase the endosomal bis(monoacylglycero)phosphate content and block HIV viral particle intercellular transmission. Biochimie, 2013, 95, 1677-1688.	2.6	25
50	Ligand-dependent transcriptional induction of lethal autophagy: A new perspective for cancer treatment. Autophagy, 2018, 14, 555-557.	9.1	25
51	Dendrogenin A: A Mammalian Metabolite of Cholesterol with Tumor Suppressor and Neurostimulating Properties. Current Medicinal Chemistry, 2015, 22, 3533-3549.	2.4	24
52	The cholesterol-derived metabolite dendrogenin A functionally reprograms breast adenocarcinoma and undifferentiated thyroid cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105390.	2.5	22
53	Flavonoids differentially modulate liver X receptors activity—Structure-function relationship analysis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 190, 173-182.	2.5	22
54	The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells. Biochemical and Biophysical Research Communications, 2014, 446, 681-686.	2.1	21

#	Article	IF	CITATIONS
55	From tamoxifen to dendrogenin A: The discovery of a mammalian tumor suppressor and cholesterol metabolite. Biochimie, 2016, 130, 109-114.	2.6	21
56	Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3β,5α-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie, 2018, 153, 139-149.	2.6	21
57	Oxysterols are potential physiological regulators of ageing. Ageing Research Reviews, 2022, 77, 101615.	10.9	21
58	The Prototypical Inhibitor of Cholesterol Esterification, Sah 58-035 [3-[Decyldimethylsily]]-N-[2-(4-methylphenyl)-1-phenylethyl]propanamide], Is an Agonist of Estrogen Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 139-149.	2.5	20
59	Modifications of benzylphenoxy ethanamine antiestrogen molecules: influence affinity for antiestrogen binding site (AEBS) and cell cytotoxicity. Biochemical Pharmacology, 1999, 57, 657-661.	4.4	19
60	Contrasting Effects of Prenyltransferase Inhibitors on Estrogen-Dependent Cell Cycle Progression and Estrogen Receptor-Mediated Transcriptional Activity in MCF-7 Cells. Endocrinology, 2003, 144, 989-998.	2.8	18
61	Human Monocyte Recognition of Adenosine-Based Cyclic Dinucleotides Unveils the A2a G _{αs} Protein-Coupled Receptor Tonic Inhibition of Mitochondrially Induced Cell Death. Molecular and Cellular Biology, 2015, 35, 479-495.	2.3	18
62	When cholesterol meets histamine, it gives rise to dendrogenin A: a tumour suppressor metabolite1. Biochemical Society Transactions, 2016, 44, 631-637.	3.4	17
63	Four decades of discovery in breast cancer research and treatment an interview with V. Craig Jordan. International Journal of Developmental Biology, 2011, 55, 703-712.	0.6	15
64	Identification of a new stilbene-derived inducer of paraoxonase 1 and ligand of the Aryl hydrocarbon Receptor. Biochemical Pharmacology, 2012, 83, 627-632.	4.4	15
65	HPLC Analysis and Skin Whitening Effects of Umbelliprenin-containing Extracts of Anethum Graveolens, Pimpinella Anisum, and Ferulago Campestris. Molecules, 2019, 24, 501.	3.8	14
66	Dendrogenin A Synergizes with Cytarabine to Kill Acute Myeloid Leukemia Cells In Vitro and In Vivo. Cancers, 2020, 12, 1725.	3.7	13
67	The anti-proliferative properties of 4-benzylphenoxy ethanamine derivatives are mediated by the anti-estrogen binding site (ABS), whereas the anti-estrogenic effects of trifluopromazine are not. Biochemical Pharmacology, 1990, 40, 425-429.	4.4	12
68	Development of a new radioligand for cholecystokinin receptor subtype 2 scintigraphy: From molecular modeling to in vivo evaluation. Bioorganic and Medicinal Chemistry, 2010, 18, 5400-5412.	3.0	12
69	One step synthesis of 6-oxo-cholestan-3β,5α-diol. Biochemical and Biophysical Research Communications, 2014, 446, 782-785.	2.1	11
70	Dendrogenin A and B two new steroidal alkaloids increasing neural responsiveness in the deafened guinea pig. Frontiers in Aging Neuroscience, 2015, 7, 145.	3.4	11
71	Oxysterols and related sterols: Implications in pharmacology and pathophysiology. Biochemical Pharmacology, 2013, 86, 1-2.	4.4	9
72	Bryonolic Acid Blocks Cancer Cell Clonogenicity and Invasiveness through the Inhibition of Fatty Acid: Cholesteryl Ester Formation. Biomedicines, 2018, 6, 21.	3.2	9

Marc Poirot

#	Article	IF	CITATIONS
73	Oxysterols: An expanding family of structurally diversified bioactive steroids. Journal of Steroid Biochemistry and Molecular Biology, 2019, 194, 105443.	2.5	9
74	Natural and semisynthetic oxyprenylated aromatic compounds as stimulators or inhibitors of melanogenesis. Bioorganic Chemistry, 2019, 87, 181-190.	4.1	9
75	Characterization of the Membranous Antiestrogen Binding Protein: I Partial purification of the protein in its active state. Journal of Receptors and Signal Transduction, 1994, 14, 23-35.	1.2	8
76	Insights into the Cholecystokinin 2 Receptor Binding Site and Processes of Activation. Molecular Pharmacology, 2006, 70, 1935-1945.	2.3	8
77	Synthesis, characterization and in vitro evaluation of new oxorhenium- and oxotechnetium-CCK4 derivatives as molecular imaging agents for CCK2-receptor targeting. European Journal of Medicinal Chemistry, 2010, 45, 423-429.	5.5	8
78	Quantitative analysis of the tumor suppressor dendrogenin A using liquid chromatography tandem mass spectrometry. Chemistry and Physics of Lipids, 2017, 207, 81-86.	3.2	8
79	Targeting the liver X receptor with dendrogenin A differentiates tumour cells to secrete immunogenic exosomeâ€enriched vesicles. Journal of Extracellular Vesicles, 2022, 11, e12211.	12.2	8
80	Characterization of the Membranous Antiestrogen Binding Protein: II Purification to homogeneity. Journal of Receptors and Signal Transduction, 1994, 14, 37-46.	1.2	7
81	Improvement of 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestane-3β,5α,6β-triol and 6-oxo-cholestan-3β,5α-diol recovery for quantification by GC/MS. Chemistry and Physics of Lipids, 2017, 207, 92-98.	3.2	7
82	A fast UPLC–HILIC method for an accurate quantiffation of dendrogenin A in human tissues. Journal of Steroid Biochemistry and Molecular Biology, 2019, 194, 105447.	2.5	7
83	Dendrogenin A Enhances Anti-Leukemic Effect of Anthracycline in Acute Myeloid Leukemia. Cancers, 2020, 12, 2933.	3.7	7
84	Different populations of progesterone receptor–steroid complexes in binding to specific DNA sequences: effects of salts on kinetics and specificity. Journal of Steroid Biochemistry and Molecular Biology, 1998, 67, 251-266.	2.5	5
85	Insulin and estrogen receptor ligand influence the FGF-2 activities in MCF-7 breast cancer cells. Biochemical Pharmacology, 2003, 65, 629-636.	4.4	5
86	Pharmacologic and genetic inhibition of cholesterol esterification enzymes reduces tumour burden: A systematic review and meta-analysis of preclinical models. Biochemical Pharmacology, 2022, 196, 114731.	4.4	5
87	Vitamin E: an overview. , 2020, , 51-66.		4
88	European network for oxysterol research (ENOR): 10 th anniversary. Journal of Steroid Biochemistry and Molecular Biology, 2021, 214, 105996.	2.5	4
89	Sterol metabolism and cancer. Biochemical Pharmacology, 2022, 196, 114843.	4.4	3
90	In vitro and In vivo oxidation and cleavage products of tocols: From chemical tuners to "VitaminEome―therapeutics. A narrative review. Food Bioscience, 2022, 49, 101839.	4.4	3

#	Article	IF	CITATIONS
91	Cytosolic Type II Estrogen Binding Site in Rat Uterus: Specific Photolabeling with Estrone. Journal of Receptors and Signal Transduction, 1992, 12, 217-231.	1.2	2
92	Abstract 938: Discovery of Dendrogenin A as the first endogenous alkylaminooxysterol present in mammals with potent cell differentiation and anticancer activity. , 2011, , .		2
93	Abstract 956: The liver-X-receptor- $\hat{l}\pm$ is involved in the induction by Tamoxifen of breast cancer cell differentiation and death. , 2012, , .		2
94	Correction for de Medina et al., Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14937-14937.	7.1	1
95	Ciblage peptidique en oncologie nucléaireÂ: intérêt de la modélisation moléculaire. Medecine Nucleaire, 2010, 34, 289-294.	0.2	1
96	Technical note: Hapten synthesis, antibody production and development of an enzyme-linked immunosorbent assay for detection of the natural steroidal alkaloid Dendrogenin A. Biochimie, 2013, 95, 482-488.	2.6	1
97	Generation of whole-body scintigraphic images with new GATE output capacities. , 2013, , .		1
98	Abstract 1662: Dendrogenin A is a newly identified mammalian steroidal alkaloid that induced autophagic cell death in melanoma cells through an LXRbeta-, Nur77- and Nor1-dependent way , 2013, , .		1
99	Abstract 1165: Identification of a cholesterol onco-metabolite, promoter of tumor in breast cancers, and of the enzyme involved in its biosynthesis. Cancer Research, 2015, 75, 1165-1165.	0.9	1
100	Characterization of a benzyl-phenoxy-ethanamine binding protein in Trypanosoma equiperdum and the possible relation between binding affinity and trypanocidal activity. Molecular and Biochemical Parasitology, 1993, 58, 311-316.	1.1	0
101	Preclinical evaluation of new radioligand of cholecystokinin/gastrin receptors in endocrine tumors xenograft nude mice. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 571, 160-164.	1.6	0
102	R167 - Oral, Club Mex-H Quantification du volume tumoral résiduel des cancers du rectum post-radiochimiothérapie par histomorphométrie quantitative. Bulletin Du Cancer, 2010, 97, S82.	1.6	0
103	R42 – Oral Un « bon et mauvais cholestérol » pour la thérapie et dans la pathophysiologie des cancers : les cholestérols époxydes et leurs dérivés sous les feux de la rampe. Bulletin Du Cancer, 2010, 97, S32.	1.6	0
104	R92: Intérêt de la modélisation moléculaire dans le développement de nouveaux radiopharmaceutiques en oncologie nucléaire. Bulletin Du Cancer, 2010, 97, S52.	1.6	0
105	R44: Médiateurs lipidiques et cancer : les exosomes comme « signalosomes » intercellulaires transporteurs de prostaglandines. Bulletin Du Cancer, 2010, 97, S32-S33.	1.6	0
106	Structure-based identification of ER and ACAT as molecular targets involved in the chemopreventive activity of the citrus auraptene. Planta Medica, 2008, 74, .	1.3	0
107	Abstract 2918: Molecular identification of the cholesterol-5,6-epoxide hydrolase: A new target for selective estrogen receptor modulators and unsaturated fatty acids. , 2010, , .		Ο
108	Abstract 1884: 6-oxo-cholestan-3β,5α-diol (OCDO) is a metabolite produced in tumors by cholesterol epoxide hydrolase activity and a tumor promoter: OCDO inhibition contributes to the anti-tumor activity of tamoxifen and dendrogenin A , 2013, , .		0

#	Article	IF	CITATIONS
109	Dendrogenin_A : A Natural Liver X Receptor Modulator for the Treatment of Acute Myeloid Leukemia. Blood, 2014, 124, 3767-3767.	1.4	0
110	Abstract P3-05-12: Circulating oxysterol metabolites as potential new surrogate markers for hormonotherapy in patients with hormone receptor-positive breast cancer? A pilot study. , 2015, , .		0
111	Abstract 5238: Characterization of the enzyme generating the cholesterol metabolite and tumor suppressor dendrogenin A in the breast and its deregulations in breast cancer. , 2018, , .		0