
Mauro Sbragaglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/512942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generalized lattice Boltzmann method with multirange pseudopotential. Physical Review E, 2007, 75, 026702.	2.1	356
2	Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle. Physical Review E, 2006, 74, 021509.	2.1	243
3	A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Physics of Fluids, 2007, 19, 043603.	4.0	183
4	Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows. Physical Review Letters, 2006, 97, 204503.	7.8	181
5	Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Physics of Fluids, 2005, 17, 093602.	4.0	156
6	Spontaneous Breakdown of Superhydrophobicity. Physical Review Letters, 2007, 99, 156001.	7.8	142
7	Stick-Slip Sliding of Water Drops on Chemically Heterogeneous Surfaces. Physical Review Letters, 2013, 111, 066101.	7.8	127
8	Convection in Multiphase Fluid Flows Using Lattice Boltzmann Methods. Physical Review Letters, 2012, 108, 104502.	7.8	90
9	Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria. Journal of Fluid Mechanics, 2009, 628, 299-309.	3.4	86
10	Mesoscopic lattice Boltzmann modeling of soft-glassy systems: Theory and simulations. Journal of Chemical Physics, 2009, 131, .	3.0	83
11	Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh–Taylor systems. Physics of Fluids, 2010, 22, .	4.0	82
12	Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity. European Physical Journal E, 2009, 29, 391-397.	1.6	81
13	Mesoscopic modelling of heterogeneous boundary conditions for microchannel flows. Journal of Fluid Mechanics, 2006, 548, 257.	3.4	68
14	Effective velocity boundary condition at a mixed slip surface. Journal of Fluid Mechanics, 2007, 578, 435-451.	3.4	68
15	Droplet size distribution in homogeneous isotropic turbulence. Physics of Fluids, 2012, 24, .	4.0	65
16	Mesoscopic two-phase model for describing apparent slip in micro-channel flows. Europhysics Letters, 2006, 74, 651-657.	2.0	61
17	Sliding drops across alternating hydrophobic and hydrophilic stripes. Physical Review E, 2014, 89, 012406.	2.1	59
18	The emergence of supramolecular forces from lattice kinetic models of non-ideal fluids: applications to the rheology of soft glassy materials. Soft Matter, 2012, 8, 10773.	2.7	54

#	Article	IF	CITATIONS
19	Interaction pressure tensor for a class of multicomponent lattice Boltzmann models. Physical Review E, 2013, 88, 013306.	2.1	54
20	Droplet breakup driven by shear thinning solutions in a microfluidic T-junction. Physical Review Fluids, 2017, 2, .	2.5	53
21	Multiple time scale dynamics in the breakdown of superhydrophobicity. Europhysics Letters, 2008, 81, 66002.	2.0	52
22	Tuning Drop Motion by Chemical Patterning of Surfaces. Langmuir, 2014, 30, 2401-2409.	3.5	52
23	Mesoscale structures at complex fluid–fluid interfaces: a novel lattice Boltzmann/molecular dynamics coupling. Soft Matter, 2013, 9, 10092.	2.7	51
24	Deformation and breakup of viscoelastic droplets in confined shear flow. Physical Review E, 2014, 90, 023305.	2.1	46
25	Capillary filling using lattice Boltzmann equations: The case of multi-phase flows. European Physical Journal: Special Topics, 2009, 166, 111-116.	2.6	45
26	Consistent pseudopotential interactions in lattice Boltzmann models. Physical Review E, 2011, 84, 036703.	2.1	45
27	Unified framework for a side-by-side comparison of different multicomponent algorithms: Lattice Boltzmann vs. phase field model. Journal of Computational Physics, 2013, 234, 263-279.	3.8	44
28	Two-dimensional plastic flow of foams and emulsions in a channel: experiments and lattice Boltzmann simulations. Journal of Fluid Mechanics, 2015, 766, 556-589.	3.4	43
29	Wetting failure and contact line dynamics in a Couette flow. Journal of Fluid Mechanics, 2008, 614, 471-493.	3.4	41
30	Natural convection with mixed insulating and conducting boundary conditions: low- and high-Rayleigh-number regimes. Journal of Fluid Mechanics, 2014, 742, 636-663.	3.4	38
31	A note on the lattice Boltzmann method beyond the Chapman-Enskog limits. Europhysics Letters, 2006, 73, 370-376.	2.0	35
32	High resolution numerical study of Rayleigh–Taylor turbulence using a thermal lattice Boltzmann scheme. Physics of Fluids, 2010, 22, 115112.	4.0	35
33	Reactive Rayleigh-Taylor systems: Front propagation and non-stationarity. Europhysics Letters, 2011, 94, 54004.	2.0	35
34	Hybrid Lattice Boltzmann/Finite Difference simulations of viscoelastic multicomponent flows in confined geometries. Journal of Computational Physics, 2015, 291, 177-197.	3.8	35
35	Continuum free-energy formulation for a class of lattice Boltzmann multiphase models. Europhysics Letters, 2009, 86, 24005.	2.0	34
36	On the effects of membrane viscosity on transient red blood cell dynamics. Soft Matter, 2020, 16, 6191-6205.	2.7	34

#	Article	IF	CITATIONS
37	Regularization of the slip length divergence in water nanoflows by inhomogeneities at the Angstrom scale. Soft Matter, 2013, 9, 8526.	2.7	30
38	Graphics processing unit implementation of lattice Boltzmann models for flowing soft systems. Physical Review E, 2009, 80, 066707.	2.1	29
39	Second-order closure in stratified turbulence: Simulations and modeling of bulk and entrainment regions. Physical Review E, 2011, 84, 016305.	2.1	29
40	Anomalous scaling and universality in hydrodynamic systems with power-law forcing. New Journal of Physics, 2004, 6, 37-37.	2.9	26
41	Linear shear flow past a hemispherical droplet adhering to a solid surface. Journal of Engineering Mathematics, 2008, 62, 35-50.	1.2	26
42	Herschel-Bulkley rheology from lattice kinetic theory of soft glassy materials. Europhysics Letters, 2010, 91, 14003.	2.0	24
43	Pair separation of magnetic elements in the quiet Sun. Astronomy and Astrophysics, 2014, 569, A121.	5.1	24
44	An optimized D2Q37 Lattice Boltzmann code on GP-GPUs. Computers and Fluids, 2013, 80, 55-62.	2.5	23
45	Direct evidence of plastic events and dynamic heterogeneities in soft-glasses. Soft Matter, 2014, 10, 4615.	2.7	23
46	Fluidization and wall slip of soft glassy materials by controlled surface roughness. Physical Review E, 2017, 95, 052602.	2.1	21
47	High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method. Physical Review E, 2018, 98, .	2.1	20
48	Stress Overshoots in Simple Yield Stress Fluids. Physical Review Letters, 2021, 127, 148003.	7.8	20
49	A Study of Fluid Interfaces and Moving Contact Lines Using the Lattice Boltzmann Method. Communications in Computational Physics, 2013, 13, 725-740.	1.7	18
50	Internal dynamics and activated processes in soft-glassy materials. Soft Matter, 2015, 11, 1271-1280.	2.7	18
51	Cooperativity flows and shear-bandings: a statistical field theory approach. Soft Matter, 2016, 12, 514-530.	2.7	18
52	Unified Theoretical and Experimental View on Transient Shear Banding. Physical Review Letters, 2019, 123, 248001.	7.8	18
53	Optimization of Multi-Phase Compressible Lattice Boltzmann Codes on Massively Parallel Multi-Core Systems. Procedia Computer Science, 2011, 4, 994-1003.	2.0	17
54	Phase-Field Model of Long-Time Glasslike Relaxation in Binary Fluid Mixtures. Physical Review Letters, 2011, 106, 164501.	7.8	16

#	Article	IF	CITATIONS
55	Sliding droplets of Xanthan solutions: A joint experimental and numerical study. European Physical Journal E, 2015, 38, 126.	1.6	16
56	Fluctuating multicomponent lattice Boltzmann model. Physical Review E, 2015, 91, 023313.	2.1	16
57	A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions. European Physical Journal E, 2016, 39, 2.	1.6	16
58	Lattice Boltzmann fluid-dynamics on the QPACE supercomputer. Procedia Computer Science, 2010, 1, 1075-1082.	2.0	15
59	Rheological properties of soft-glassy flows from hydro-kinetic simulations. Europhysics Letters, 2013, 104, 48006.	2.0	15
60	Hydrodynamic behavior of the pseudopotential lattice Boltzmann method for interfacial flows. Physical Review E, 2019, 99, 053305.	2.1	15
61	Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows. Physical Review E, 2016, 94, 063302.	2.1	14
62	Metastability at the Yield-Stress Transition in Soft Glasses. Physical Review X, 2018, 8, .	8.9	14
63	Effects of thermal fluctuations in the fragmentation of a nanoligament. Physical Review E, 2018, 98, 012802.	2.1	14
64	A Lattice Boltzmann method for turbulent emulsions. Journal of Physics: Conference Series, 2011, 318, 052017.	0.4	13
65	Volumetric formulation for a class of kinetic models with energy conservation. Physical Review E, 2010, 82, 046709.	2.1	12
66	A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code. Lecture Notes in Computer Science, 2012, , 640-650.	1.3	12
67	Simulations of Boiling Systems Using a Lattice Boltzmann Method. Communications in Computational Physics, 2013, 13, 696-705.	1.7	12
68	GPU based detection of topological changes in Voronoi diagrams. Computer Physics Communications, 2017, 213, 19-28.	7.5	11
69	Lattice Boltzmann simulations of droplet dynamics in time-dependent flows. European Physical Journal E, 2018, 41, 6.	1.6	11
70	Avalanche statistics during coarsening dynamics. Soft Matter, 2019, 15, 4518-4524.	2.7	11
71	Intermittency in turbulence: Computing the scaling exponents in shell models. Physical Review E, 2003, 68, 046304.	2.1	10
72	Boundary induced nonlinearities at small Reynolds numbers. Physica D: Nonlinear Phenomena, 2007, 228, 140-147.	2.8	10

#	Article	IF	CITATIONS
73	Stretching of viscoelastic drops in steady sliding. Soft Matter, 2017, 13, 3116-3124.	2.7	10
74	Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200395.	3.4	10
75	Thermal fluctuations of an interface near a contact line. Physical Review E, 2016, 94, 052803.	2.1	9
76	Loading and relaxation dynamics of a red blood cell. Soft Matter, 2021, 17, 5978-5990.	2.7	9
77	The importance of chemical potential in the determination of water slip in nanochannels. European Physical Journal E, 2015, 38, 127.	1.6	8
78	Fluidisation and plastic activity in a model soft-glassy material flowing in micro-channels with rough walls. Europhysics Letters, 2016, 114, 64003.	2.0	8
79	Effects of viscoelasticity on droplet dynamics and break-up in microfluidic T-Junctions: a lattice Boltzmann study. European Physical Journal E, 2016, 39, 6.	1.6	8
80	On the impact of controlled wall roughness shape on the flow of a soft material. Europhysics Letters, 2019, 127, 34005.	2.0	8
81	Continuum modeling of shear startup in soft glassy materials. Physical Review E, 2021, 104, 034612.	2.1	8
82	Wall fluidization in two acts: from stiff to soft roughness. Soft Matter, 2018, 14, 1088-1093.	2.7	7
83	A lattice Boltzmann study on Brownian diffusion and friction of a particle in a confined multicomponent fluid. Journal of Computational Science, 2020, 47, 101113.	2.9	7
84	Lattice Boltzmann simulations of droplet breakup in confined and time-dependent flows. Physical Review Fluids, 2020, 5, .	2.5	7
85	Inhomogeneous anisotropic passive scalars. Journal of Turbulence, 2005, 6, N10.	1.4	6
86	Wetting/dewetting transition of two-phase flows in nano-corrugated channels. Journal of Computer-Aided Materials Design, 2007, 14, 447-456.	0.7	6
87	Deformation and break-up of Viscoelastic Droplets Using Lattice Boltzmann Models. Procedia IUTAM, 2015, 15, 215-227.	1.2	6
88	Non-locality and viscous drag effects on the shear localisation in soft-glassy materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 473, 133-140.	4.7	6
89	Immiscible Rayleigh-Taylor turbulence using mesoscopic lattice Boltzmann algorithms. Physical Review Fluids, 2021, 6, .	2.5	6
90	Mesoscale perspective on the Tolman length. Physical Review E, 2022, 105, 015301.	2.1	6

#	Article	IF	CITATIONS
91	Mesoscopic modelling of local phase transitions and apparent-slip phenomena in microflows. Mathematics and Computers in Simulation, 2006, 72, 84-88.	4.4	5
92	Sub-Kolmogorov droplet dynamics in isotropic turbulence using a multiscale lattice Boltzmann scheme. Journal of Computational Science, 2020, 45, 101178.	2.9	5
93	Rayleigh–Bénard convection of a model emulsion: anomalous heat-flux fluctuations and finite-size droplet effects. Soft Matter, 2021, 17, 3709-3721.	2.7	5
94	Dynamical scaling and intermittency in shell models of turbulence. Physical Review E, 2005, 71, 065302.	2.1	4
95	Numerical simulations of compressible Rayleigh–Taylor turbulence in stratified fluids. Physica Scripta, 2010, T142, 014017.	2.5	4
96	Ligament break-up simulation through pseudo-potential lattice Boltzmann method. AIP Conference Proceedings, 2018, , .	0.4	4
97	Structure and isotropy of lattice pressure tensors for multirange potentials. Physical Review E, 2021, 103, 063309.	2.1	4
98	A Gibbs-Like Measure for Single-Time, Multi-Scale Energy Transfer in Stochastic Signals and Shell Model of Turbulence. Journal of Statistical Physics, 2004, 114, 137-154.	1.2	3
99	A numerical tool for the study of the hydrodynamic recovery of the Lattice Boltzmann Method. Computers and Fluids, 2018, 172, 241-250.	2.5	3
100	Lattice Boltzmann simulations of plasma wakefield acceleration. Physics of Plasmas, 2022, 29, .	1.9	3
101	MESOSCOPIC MODELLING OF FLUID FLOWS IN MICRO AND NANO CHANNEL. International Journal of Modern Physics C, 2007, 18, 758-765.	1.7	2
102	Numerical simulations of Rayleigh–Taylor front evolution in turbulent stratified fluids. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2448-2455.	3.4	2
103	Mesoscopic Simulation Study of Wall Roughness Effects in Micro-channel Flows of Dense Emulsions. Journal of Statistical Physics, 2015, 161, 1482-1495.	1.2	2
104	Lattice Boltzmann simulations of nonequilibrium fluctuations in a nonideal binary mixture. Physical Review E, 2019, 99, 063302.	2.1	2
105	Validation and application of the lattice Boltzmann algorithm for a turbulent immiscible Rayleigh–Taylor system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200396.	3.4	2
106	A lattice Boltzmann study of particle settling in a fluctuating multicomponent fluid under confinement. European Physical Journal E, 2021, 44, 142.	1.6	2
107	TLBfind: a Thermal Lattice Boltzmann code for concentrated emulsions with FINite-size Droplets. Computer Physics Communications, 2022, 273, 108259.	7.5	2
108	A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence. Physica D: Nonlinear Phenomena, 2004, 197, 303-312.	2.8	1

#	Article	IF	CITATIONS
109	Shear banding from lattice kinetic models with competing interactions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2439-2447.	3.4	1
110	Heterogeneous diffuse interfaces: A new mechanism for arrested coarsening in binary mixtures. European Physical Journal E, 2011, 34, 93.	1.6	1
111	Response function of a moving contact line. Physical Review Fluids, 2018, 3, .	2.5	1
112	Front propagation in Rayleigh-Taylor systems with reaction. Journal of Physics: Conference Series, 2011, 318, 092024.	0.4	0
113	Second order closure for stratified convection: bulk region and overshooting. Journal of Physics: Conference Series, 2011, 318, 042018.	0.4	0
114	Viscoelastic multicomponent fluids in confined flow-focusing devices. AIP Conference Proceedings, 2015, , .	0.4	0
115	Lattice Boltzmann Methods for Nanofluidics. , 2016, , 1771-1777.		0
116	Topical issue on Multi-scale phenomena in complex flows and flowing matter. European Physical Journal E, 2016, 39, 56.	1.6	0
117	Visco-elastic flows at macro-, micro- and nano-scales. Houille Blanche, 2009, 95, 79-83.	0.3	0
118	Angular Momentum and Spin. Unitext, 2012, , 113-144.	0.1	0
119	Summary of Quantum and Statistical Mechanics. Unitext, 2012, , 3-36.	0.1	0
120	Canonical Ensemble. Unitext, 2012, , 227-288.	0.1	0
121	Kinetic Physics. Unitext, 2012, , 301-313.	0.1	0
122	Thermodynamics and Microcanonical Ensemble. Unitext, 2012, , 193-226.	0.1	0
123	Central Force Field. Unitext, 2012, , 145-162.	0.1	0
124	Bose-Einstein Gases. Unitext, 2012, , 315-335.	0.1	0
125	Fluctuations and Complements. Unitext, 2012, , 363-392.	0.1	0