
Chang-il Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129379/publications.pdf Version: 2024-02-01

CHANC-IL HWANC

#	Article	IF	CITATIONS
1	Germline Aberrations in Pancreatic Cancer: Implications for Clinical Care. Cancers, 2022, 14, 3239.	3.7	11
2	EVI1 activates tumor-promoting transcriptional enhancers in pancreatic cancer. NAR Cancer, 2021, 3, zcab023.	3.1	10
3	Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nature Communications, 2021, 12, 3414.	12.8	65
4	Epigenetic Alterations in Pancreatic Cancer Metastasis. Biomolecules, 2021, 11, 1082.	4.0	28
5	Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discovery, 2020, 10, 1566-1589.	9.4	90
6	SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	65
7	Identification of Resistance Pathways Specific to Malignancy Using Organoid Models of Pancreatic Cancer. Clinical Cancer Research, 2019, 25, 6742-6755.	7.0	45
8	Abstract B25: Engrailed-1 promotes pancreatic cancer progression via antagonizing COMPASS activity. , 2019, , .		0
9	Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. Journal of Experimental Medicine, 2017, 214, 579-596.	8.5	1,582
10	Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. Cell, 2017, 170, 875-888.e20.	28.9	339
11	Abstract 1027: Development of orthotopically grafted organoid models to study pancreatic cancer progression. , 2017, , .		0
12	Preclinical models of pancreatic ductal adenocarcinoma. Journal of Pathology, 2016, 238, 197-204.	4.5	87
13	Model organoids provide new research opportunities for ductal pancreatic cancer. Molecular and Cellular Oncology, 2016, 3, e1014757.	0.7	52
14	Abstract B11: Development of orthotopically grafted organoid models to study pancreatic cancer progression. , 2016, , .		0
15	Abstract A04: Identification of novel pancreatic cancer-specific biomarkers with organoid models. , 2016, , .		0
16	Abstract B64: Using pancreatic organoids to infer therapeutic resistance and sensitivity. , 2016, , .		0
17	miR-34 Cooperates with p53 in Suppression of Prostate Cancer by Joint Regulation of Stem Cell Compartment. Cell Reports, 2015, 12, 2181.	6.4	0
18	Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell, 2015, 160, 324-338.	28.9	1,584

CHANG-IL HWANG

#	Article	IF	CITATIONS
19	miR-34 Cooperates with p53 in Suppression of Prostate Cancer by Joint Regulation of Stem Cell Compartment. Cell Reports, 2014, 6, 1000-1007.	6.4	93
20	Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature, 2013, 495, 241-245.	27.8	307
21	Novel Strategy for Selection of Monoclonal Antibodies Against Highly Conserved Antigens: Phage Library Panning Against Ephrin-B2 Displayed on Yeast. PLoS ONE, 2012, 7, e30680.	2.5	4
22	Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14240-14245.	7.1	113
23	MET-dependent cancer invasion may be preprogrammed by early alterations of p53-regulated feedforward loop and triggered by stromal cell-derived HGF. Cell Cycle, 2011, 10, 3834-3840.	2.6	21
24	Frequent Downregulation of miR-34 Family in Human Ovarian Cancers. Clinical Cancer Research, 2010, 16, 1119-1128.	7.0	288
25	Abstract 4183: Modeling soft tissue sarcomas by conditional inactivation of p53 and Rb tumor suppressor genes. , 2010, , .		0
26	FOXO3a Turns the Tumor Necrosis Factor Receptor Signaling Towards Apoptosis Through Reciprocal Regulation of c-Jun N-Terminal Kinase and NF-κB. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 112-120.	2.4	47
27	CADD153 mediates celecoxib-induced apoptosis in cervical cancer cells. Carcinogenesis, 2007, 28, 223-231.	2.8	45
28	Selection of Neural Differentiation-Specific Genes by Comparing Profiles of Random Differentiation. Stem Cells, 2006, 24, 1946-1955.	3.2	29
29	GADD153 mediates celecoxib-induced apoptosis in cervical cancer cells. Carcinogenesis, 2006, 27, 1961-1969.	2.8	23
30	Caveolin-1 upregulation in senescent neurons alters amyloid precursor protein processing. Experimental and Molecular Medicine, 2006, 38, 126-133.	7.7	55
31	Gene expression profiling of anti-GBM glomerulonephritis model: The role of NF-κB in immune complex kidney disease. Kidney International, 2004, 66, 1826-1837.	5.2	45
32	Adenovirus-TRAIL can overcome TRAIL resistance and induce a bystander effect. Cancer Gene Therapy, 2003, 10, 540-548.	4.6	48
33	Identification of radiation-specific responses from gene expression profile. Oncogene, 2002, 21, 8521-8528.	5.9	107
34	Gene Profile of Replicative Senescence Is Different from Progeria or Elderly Donor. Biochemical and Biophysical Research Communications, 2001, 282, 934-939.	2.1	53
35	SEMA3C Supports Pancreatic Cancer Progression by Regulating the Autophagy Process and Tumor Immune Microenvironment. Frontiers in Oncology, 0, 12, .	2.8	11