Theresa T Lu

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/5127964/publications.pdf
Version: 2024-02-01

$$
\begin{aligned}
& \text { Nogo-A reduces ceramide <i>de novo</i> biosynthesis to protect from heart failure. Cardiovascular } \\
& \text { Research, } 2023,119,506-519 .
\end{aligned}
$$

Advances in understanding and examining lymphatic function: relevance for understanding autoimmunity. Current Opinion in Rheumatology, 2022, 34, 133-138.

Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a
hypomorphic phenotype. Journal of Biological Chemistry, 2021, 296, 100733.

Immune Cellâ€"Stromal Circuitry in Lupus Photosensitivity. Journal of Immunology, 2021, 206, 302-309.
0.8

Lymphatic-specific intracellular modulation of receptor tyrosine kinase signaling improves lymphatic
growth and function. Science Signaling, 2021, 14, .

6 T2B or not to B: Calming neutrophils offshore. Journal of Experimental Medicine, 2021, 218, .
8.5

Fibroblast subtypes in tissues affected by autoimmunity: with lessons from lymph node fibroblasts.
$7 \quad$ Current Opinion in Immunology, 2020, 64, 63-70.
$8 \quad$ Adaptive and innate immune cell responses in tendons and lymph nodes after tendon injury and repair.
Journal of Applied Physiology, 2020, 128, 473-482.

9 Lymph node stromal CCL2 limits antibody responses. Science Immunology, 2020, 5, .
11 The Cytokine TNF Promotes Transcription Factor SREBP Activity and Binding to Inflammatory Genes to
Activate Macrophages and Limit Tissue Repair. Immunity, 2019, 51, 241-257.e9.

12 Immunopathogenesis of Pediatric Localized Scleroderma. Frontiers in Immunology, 2019, 10, 908.
4.8

62

13 Lymphatic Function in Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 519.
4.8

27

THU0336â€...DEVELOPING A NOVEL RAPID EX VIVO MODEL OF SKIN FIBROSIS FOR SYSTEMIC SCLEROSIS RESEARCH. , 2019, , .

15 17â€...Type I interferon modulates ADAM17 activity in photosensitive lupus mouse models. , 2019, , .
1

16 109â€...Dermal lymphatic characterization and photosensitivity in the MRL/lpr lupus model. , 2019, , .
A protective Langerhans cellâ€"keratinocyte axis that is dysfunctional in photosensitivity. Science
Translational Medicine, 2018, 10,.

Regulation of Lymph Node Vascularâ€"Stromal Compartment by Dendritic Cells. Trends in Immunology,
23 Dendritic cells maintain dermal adiposeâ $\epsilon^{\text {" }}$ derived stromal cells in skin fibrosis. Journal of Clinical
Investigation, 2016, 126, 4331-4345.
24 Update on macrophages and innate immunity in scleroderma. Current Opinion in Rheumatology, 2015,

25 A Dendritic-Cell-Stromal Axis Maintains Immune Responses in Lymph Nodes. Immunity, 2015, 42, 719-730.
27 Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Frontiers in Immunology, 2014, 5, 47.
$4.8 \quad 73$
Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with
Immunology, 2012, $3,282$.28
$29 \quad \begin{array}{ll} & \text { IL-17 } \\ 3-4\end{array}$

 3-4.\(10.5 \quad 1\)
 | \# | Article | IF | Citations |
| :---: | :---: | :---: | :---: |
| 37 | Overlap between Systemic Lupus Erythematosus and Kikuchi Fujimoto Disease. HSS Journal, 2009, 5, 169-177. | 1.7 | 25 |
| 38 | Fibroblast-Type Reticular Stromal Cells Regulate the Lymph Node Vasculature. Journal of Immunology, 2008, 181, 3887-3896. | 0.8 | 114 |
| 39 | Depletion of Vascular Endothelial Progenitor Cells Inhibits Inflammation. Blood, 2008, 112, 694-694. | 1.4 | 0 |
| 40 | IFN-î3 Suppresses IL-10 Production and Synergizes with TLR2 by Regulating GSK3 and CREB/AP-1 Proteins. Immunity, 2006, 24, 563-574. | 14.3 | 370 |
| 41 | Regulation of lymph node vascular growth by dendritic cells. Journal of Experimental Medicine, 2006, 203, 1903-1913. | 8.5 | 169 |
| 42 | Intrinsic Lymphotoxin-î2 Receptor Requirement for Homeostasis of Lymphoid Tissue Dendritic Cells. Immunity, 2005, 22, 439-450. | 14.3 | 304 |
| 43 | Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunology, 2004, 5, 713-720. | 14.5 | 372 |
| 44 | Thrombosis and pediatric Wegener's granulomatosis: Acquired and genetic risk factors for hypercoagulability. Arthritis and Rheumatism, 2003, 49, 862-865. | 6.7 | 37 |
| 45 | Integrin-dependence of Lymphocyte Entry into the Splenic White Pulp. Journal of Experimental Medicine, 2003, 197, 353-361. | 8.5 | 153 |
| 46 | Integrin-Mediated Long-Term B Cell Retention in the Splenic Marginal Zone. Science, 2002, 297, 409-412. | 12.6 | 353 |
| 47 | Traffic Patterns of B Cells and Plasma Cells. Advances in Experimental Medicine and Biology, 2002, 512, 35-41. | 1.6 | 18 |
| 48 | A Coordinated Change in Chemokine Responsiveness Guides Plasma Cell Movements. Journal of Experimental Medicine, 2001, 194, 45-56. | 8.5 | 589 |
| 49 | Platelet Endothelial Cell Adhesion Molecule-1 Is Phosphorylatable by c-Src, Binds Src-Src homology 2 Domain, and Exhibits Immunoreceptor Tyrosine-based Activation Motif-like Properties. Journal of Biological Chemistry, 1997, 272, 14442-14446. | 3.4 | 93 |

