Theresa T Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5127964/publications.pdf

Version: 2024-02-01

218677 243625 3,671 49 26 44 h-index citations g-index papers 52 52 52 5263 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Nogo-A reduces ceramide <i>de novo</i> biosynthesis to protect from heart failure. Cardiovascular Research, 2023, 119, 506-519.	3.8	6
2	Advances in understanding and examining lymphatic function: relevance for understanding autoimmunity. Current Opinion in Rheumatology, 2022, 34, 133-138.	4.3	1
3	Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype. Journal of Biological Chemistry, 2021, 296, 100733.	3.4	9
4	Immune Cell–Stromal Circuitry in Lupus Photosensitivity. Journal of Immunology, 2021, 206, 302-309.	0.8	11
5	Lymphatic-specific intracellular modulation of receptor tyrosine kinase signaling improves lymphatic growth and function. Science Signaling, 2021, 14, .	3.6	15
6	T2B or not to B: Calming neutrophils offshore. Journal of Experimental Medicine, 2021, 218, .	8.5	O
7	Fibroblast subtypes in tissues affected by autoimmunity: with lessons from lymph node fibroblasts. Current Opinion in Immunology, 2020, 64, 63-70.	5.5	3
8	Adaptive and innate immune cell responses in tendons and lymph nodes after tendon injury and repair. Journal of Applied Physiology, 2020, 128, 473-482.	2.5	24
9	Lymph node stromal CCL2 limits antibody responses. Science Immunology, 2020, 5, .	11.9	30
10	Immunopathogenesis of Juvenile Systemic Sclerosis. Frontiers in Immunology, 2019, 10, 1352.	4.8	23
11	The Cytokine TNF Promotes Transcription Factor SREBP Activity and Binding to Inflammatory Genes to Activate Macrophages and Limit Tissue Repair. Immunity, 2019, 51, 241-257.e9.	14.3	91
12	Immunopathogenesis of Pediatric Localized Scleroderma. Frontiers in Immunology, 2019, 10, 908.	4.8	62
13	Lymphatic Function in Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 519.	4.8	27
14	THU0336â€DEVELOPING A NOVEL RAPID EX VIVO MODEL OF SKIN FIBROSIS FOR SYSTEMIC SCLEROSIS RESEARCH. , 2019, , .		0
15	17â€Type I interferon modulates ADAM17 activity in photosensitive lupus mouse models. , 2019, , .		1
16	109â€Dermal lymphatic characterization and photosensitivity in the MRL/lpr lupus model. , 2019, , .		0
17	Role of type I interferons and innate immunity in systemic sclerosis: unbalanced activities on distinct cell types?. Current Opinion in Rheumatology, 2019, 31, 569-575.	4.3	10
18	Disruption of the Gut Microbiome Increases the Risk of Periprosthetic Joint Infection in Mice. Clinical Orthopaedics and Related Research, 2019, 477, 2588-2598.	1.5	25

#	Article	IF	CITATIONS
19	A protective Langerhans cellâ \in keratinocyte axis that is dysfunctional in photosensitivity. Science Translational Medicine, 2018, 10, .	12.4	48
20	The roles of dermal white adipose tissue loss in scleroderma skin fibrosis. Current Opinion in Rheumatology, 2017, 29, 585-590.	4.3	30
21	Tertiary lymphoid organs in systemic autoimmune diseases:Â pathogenic or protective?. F1000Research, 2017, 6, 196.	1.6	31
22	Regulation of Lymph Node Vascular–Stromal Compartment by Dendritic Cells. Trends in Immunology, 2016, 37, 764-777.	6.8	23
23	Dendritic cells maintain dermal adipose–derived stromal cells in skin fibrosis. Journal of Clinical Investigation, 2016, 126, 4331-4345.	8.2	38
24	Update on macrophages and innate immunity in scleroderma. Current Opinion in Rheumatology, 2015, 27, 530-536.	4.3	34
25	A Dendritic-Cell-Stromal Axis Maintains Immune Responses in Lymph Nodes. Immunity, 2015, 42, 719-730.	14.3	69
26	Multiple CD11c+ Cells Collaboratively Express IL-1β To Modulate Stromal Vascular Endothelial Growth Factor and Lymph Node Vascular–Stromal Growth. Journal of Immunology, 2014, 192, 4153-4163.	0.8	35
27	Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Frontiers in Immunology, 2014, 5, 47.	4.8	73
28	Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoinflammatory lymphadenopathy. Frontiers in Immunology, 2012, 3, 282.	4.8	39
29	IL-17, a new kid on the block of tertiary lymphoid organs. Cellular and Molecular Immunology, 2012, 9, 3-4.	10.5	1
30	Dual regulation of IRF4 function in T and B cells is required for the coordination of T–B cell interactions and the prevention of autoimmunity. Journal of Experimental Medicine, 2012, 209, 581-596.	8.5	62
31	Lymph node vascular-stromal growth and function as a potential target for controlling immunity. Clinical Immunology, 2012, 144, 109-116.	3.2	11
32	Dendritic Cells: Novel Players in Fibrosis and Scleroderma. Current Rheumatology Reports, 2012, 14, 30-38.	4.7	29
33	Normalization of the Lymph Node T Cell Stromal Microenvironment in lpr/lpr Mice Is Associated with SU5416-Induced Reduction in Autoantibodies. PLoS ONE, 2012, 7, e32828.	2.5	9
34	Coordinated Regulation of Lymph Node Vascular–Stromal Growth First by CD11c+ Cells and Then by T and B Cells. Journal of Immunology, 2011, 187, 5558-5567.	0.8	109
35	Inhibition of Neovascularization to Simultaneously Ameliorate Graft-vs-Host Disease and Decrease Tumor Growth. Journal of the National Cancer Institute, 2010, 102, 894-908.	6.3	53
36	CD11chi Dendritic Cells Regulate the Re-establishment of Vascular Quiescence and Stabilization after Immune Stimulation of Lymph Nodes. Journal of Immunology, 2010, 184, 4247-4257.	0.8	39

#	Article	IF	CITATIONS
37	Overlap between Systemic Lupus Erythematosus and Kikuchi Fujimoto Disease. HSS Journal, 2009, 5, 169-177.	1.7	25
38	Fibroblast-Type Reticular Stromal Cells Regulate the Lymph Node Vasculature. Journal of Immunology, 2008, 181, 3887-3896.	0.8	114
39	Depletion of Vascular Endothelial Progenitor Cells Inhibits Inflammation. Blood, 2008, 112, 694-694.	1.4	0
40	IFN-Î ³ Suppresses IL-10 Production and Synergizes with TLR2 by Regulating GSK3 and CREB/AP-1 Proteins. Immunity, 2006, 24, 563-574.	14.3	370
41	Regulation of lymph node vascular growth by dendritic cells. Journal of Experimental Medicine, 2006, 203, 1903-1913.	8.5	169
42	Intrinsic Lymphotoxin- \hat{l}^2 Receptor Requirement for Homeostasis of Lymphoid Tissue Dendritic Cells. Immunity, 2005, 22, 439-450.	14.3	304
43	Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunology, 2004, 5, 713-720.	14.5	372
44	Thrombosis and pediatric Wegener's granulomatosis: Acquired and genetic risk factors for hypercoagulability. Arthritis and Rheumatism, 2003, 49, 862-865.	6.7	37
45	Integrin-dependence of Lymphocyte Entry into the Splenic White Pulp. Journal of Experimental Medicine, 2003, 197, 353-361.	8.5	153
46	Integrin-Mediated Long-Term B Cell Retention in the Splenic Marginal Zone. Science, 2002, 297, 409-412.	12.6	353
47	Traffic Patterns of B Cells and Plasma Cells. Advances in Experimental Medicine and Biology, 2002, 512, 35-41.	1.6	18
48	A Coordinated Change in Chemokine Responsiveness Guides Plasma Cell Movements. Journal of Experimental Medicine, 2001, 194, 45-56.	8. 5	589
49	Platelet Endothelial Cell Adhesion Molecule-1 Is Phosphorylatable by c-Src, Binds Src-Src homology 2 Domain, and Exhibits Immunoreceptor Tyrosine-based Activation Motif-like Properties. Journal of Biological Chemistry, 1997, 272, 14442-14446.	3.4	93