
Theresa T Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5127964/publications.pdf Version: 2024-02-01

THEDESA T L II

#	Article	IF	CITATIONS
1	A Coordinated Change in Chemokine Responsiveness Guides Plasma Cell Movements. Journal of Experimental Medicine, 2001, 194, 45-56.	8.5	589
2	Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunology, 2004, 5, 713-720.	14.5	372
3	IFN-Î ³ Suppresses IL-10 Production and Synergizes with TLR2 by Regulating GSK3 and CREB/AP-1 Proteins. Immunity, 2006, 24, 563-574.	14.3	370
4	Integrin-Mediated Long-Term B Cell Retention in the Splenic Marginal Zone. Science, 2002, 297, 409-412.	12.6	353
5	Intrinsic Lymphotoxin-Î ² Receptor Requirement for Homeostasis of Lymphoid Tissue Dendritic Cells. Immunity, 2005, 22, 439-450.	14.3	304
6	Regulation of lymph node vascular growth by dendritic cells. Journal of Experimental Medicine, 2006, 203, 1903-1913.	8.5	169
7	Integrin-dependence of Lymphocyte Entry into the Splenic White Pulp. Journal of Experimental Medicine, 2003, 197, 353-361.	8.5	153
8	Fibroblast-Type Reticular Stromal Cells Regulate the Lymph Node Vasculature. Journal of Immunology, 2008, 181, 3887-3896.	0.8	114
9	Coordinated Regulation of Lymph Node Vascular–Stromal Growth First by CD11c+ Cells and Then by T and B Cells. Journal of Immunology, 2011, 187, 5558-5567.	0.8	109
10	Platelet Endothelial Cell Adhesion Molecule-1 Is Phosphorylatable by c-Src, Binds Src-Src homology 2 Domain, and Exhibits Immunoreceptor Tyrosine-based Activation Motif-like Properties. Journal of Biological Chemistry, 1997, 272, 14442-14446.	3.4	93
11	The Cytokine TNF Promotes Transcription Factor SREBP Activity and Binding to Inflammatory Genes to Activate Macrophages and Limit Tissue Repair. Immunity, 2019, 51, 241-257.e9.	14.3	91
12	Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Frontiers in Immunology, 2014, 5, 47.	4.8	73
13	A Dendritic-Cell-Stromal Axis Maintains Immune Responses in Lymph Nodes. Immunity, 2015, 42, 719-730.	14.3	69
14	Dual regulation of IRF4 function in T and B cells is required for the coordination of T–B cell interactions and the prevention of autoimmunity. Journal of Experimental Medicine, 2012, 209, 581-596.	8.5	62
15	Immunopathogenesis of Pediatric Localized Scleroderma. Frontiers in Immunology, 2019, 10, 908.	4.8	62
16	Inhibition of Neovascularization to Simultaneously Ameliorate Graft-vs-Host Disease and Decrease Tumor Growth. Journal of the National Cancer Institute, 2010, 102, 894-908.	6.3	53
17	A protective Langerhans cell–keratinocyte axis that is dysfunctional in photosensitivity. Science Translational Medicine, 2018, 10, .	12.4	48
18	CD11chi Dendritic Cells Regulate the Re-establishment of Vascular Quiescence and Stabilization after Immune Stimulation of Lymph Nodes. Journal of Immunology, 2010, 184, 4247-4257.	0.8	39

THERESA T LU

#	Article	IF	CITATIONS
19	Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoinflammatory lymphadenopathy. Frontiers in Immunology, 2012, 3, 282.	4.8	39
20	Dendritic cells maintain dermal adipose–derived stromal cells in skin fibrosis. Journal of Clinical Investigation, 2016, 126, 4331-4345.	8.2	38
21	Thrombosis and pediatric Wegener's granulomatosis: Acquired and genetic risk factors for hypercoagulability. Arthritis and Rheumatism, 2003, 49, 862-865.	6.7	37
22	Multiple CD11c+ Cells Collaboratively Express IL-1β To Modulate Stromal Vascular Endothelial Growth Factor and Lymph Node Vascular–Stromal Growth. Journal of Immunology, 2014, 192, 4153-4163.	0.8	35
23	Update on macrophages and innate immunity in scleroderma. Current Opinion in Rheumatology, 2015, 27, 530-536.	4.3	34
24	Tertiary lymphoid organs in systemic autoimmune diseases:Â pathogenic or protective?. F1000Research, 2017, 6, 196.	1.6	31
25	The roles of dermal white adipose tissue loss in scleroderma skin fibrosis. Current Opinion in Rheumatology, 2017, 29, 585-590.	4.3	30
26	Lymph node stromal CCL2 limits antibody responses. Science Immunology, 2020, 5, .	11.9	30
27	Dendritic Cells: Novel Players in Fibrosis and Scleroderma. Current Rheumatology Reports, 2012, 14, 30-38.	4.7	29
28	Lymphatic Function in Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 519.	4.8	27
29	Overlap between Systemic Lupus Erythematosus and Kikuchi Fujimoto Disease. HSS Journal, 2009, 5, 169-177.	1.7	25
30	Disruption of the Gut Microbiome Increases the Risk of Periprosthetic Joint Infection in Mice. Clinical Orthopaedics and Related Research, 2019, 477, 2588-2598.	1.5	25
31	Adaptive and innate immune cell responses in tendons and lymph nodes after tendon injury and repair. Journal of Applied Physiology, 2020, 128, 473-482.	2.5	24
32	Regulation of Lymph Node Vascular–Stromal Compartment by Dendritic Cells. Trends in Immunology, 2016, 37, 764-777.	6.8	23
33	Immunopathogenesis of Juvenile Systemic Sclerosis. Frontiers in Immunology, 2019, 10, 1352.	4.8	23
34	Traffic Patterns of B Cells and Plasma Cells. Advances in Experimental Medicine and Biology, 2002, 512, 35-41.	1.6	18
35	Lymphatic-specific intracellular modulation of receptor tyrosine kinase signaling improves lymphatic growth and function. Science Signaling, 2021, 14, .	3.6	15
36	Lymph node vascular-stromal growth and function as a potential target for controlling immunity. Clinical Immunology, 2012, 144, 109-116.	3.2	11

THERESA T LU

#	Article	IF	CITATIONS
37	Immune Cell–Stromal Circuitry in Lupus Photosensitivity. Journal of Immunology, 2021, 206, 302-309.	0.8	11
38	Role of type I interferons and innate immunity in systemic sclerosis: unbalanced activities on distinct cell types?. Current Opinion in Rheumatology, 2019, 31, 569-575.	4.3	10
39	Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype. Journal of Biological Chemistry, 2021, 296, 100733.	3.4	9
40	Normalization of the Lymph Node T Cell Stromal Microenvironment in lpr/lpr Mice Is Associated with SU5416-Induced Reduction in Autoantibodies. PLoS ONE, 2012, 7, e32828.	2.5	9
41	Nogo-A reduces ceramide <i>de novo</i> biosynthesis to protect from heart failure. Cardiovascular Research, 2023, 119, 506-519.	3.8	6
42	Fibroblast subtypes in tissues affected by autoimmunity: with lessons from lymph node fibroblasts. Current Opinion in Immunology, 2020, 64, 63-70.	5.5	3
43	IL-17, a new kid on the block of tertiary lymphoid organs. Cellular and Molecular Immunology, 2012, 9, 3-4.	10.5	1
44	17â€Type I interferon modulates ADAM17 activity in photosensitive lupus mouse models. , 2019, , .		1
45	Advances in understanding and examining lymphatic function: relevance for understanding autoimmunity. Current Opinion in Rheumatology, 2022, 34, 133-138.	4.3	1
46	THU0336â€DEVELOPING A NOVEL RAPID EX VIVO MODEL OF SKIN FIBROSIS FOR SYSTEMIC SCLEROSIS RESEARCH. , 2019, , .		0
47	109â $€$ Dermal lymphatic characterization and photosensitivity in the MRL/lpr lupus model. , 2019, , .		0
48	T2B or not to B: Calming neutrophils offshore. Journal of Experimental Medicine, 2021, 218, .	8.5	0
49	Depletion of Vascular Endothelial Progenitor Cells Inhibits Inflammation. Blood, 2008, 112, 694-694.	1.4	0