
Maurizio Remelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5126741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coordination Chemistry Reviews, 2012, 256, 2129-2141.	18.8	354
2	Iron chelating agents for the treatment of iron overload. Coordination Chemistry Reviews, 2008, 252, 1225-1240.	18.8	141
3	Interaction Of The Human Prion PrP(106â^'126) Sequence With Copper(II), Manganese(II), And Zinc(II):Â NMR and EPR Studies. Journal of the American Chemical Society, 2005, 127, 996-1006.	13.7	127
4	Metallacrowns of copper(II) and aminohydroxamates: Thermodynamics of self assembly and host–guest equilibria. Coordination Chemistry Reviews, 2012, 256, 289-315.	18.8	118
5	Potentiometric, spectrophotometric and calorimetric study on iron(III) and copper(II) complexes with 1,2-dimethyl-3-hydroxy-4-pyridinone. Journal of Inorganic Biochemistry, 2008, 102, 684-692.	3.5	95
6	Chelating agents for human diseases related to aluminium overload. Coordination Chemistry Reviews, 2012, 256, 89-104.	18.8	95
7	Stochastic Theory of Multiple-Site Linear Adsorption Chromatography. Analytical Chemistry, 1999, 71, 3453-3462.	6.5	71
8	The characteristic function method in the stochastic theory of chromatography. The Journal of Physical Chemistry, 1986, 90, 1885-1891.	2.9	68
9	Prion proteins and copper ions. Biological and chemical controversies. Dalton Transactions, 2010, 39, 6371.	3.3	65
10	Copper Binding to the Neurotoxic Peptide PrP106-126: Thermodynamic and Structural Studies. ChemBioChem, 2004, 5, 349-359.	2.6	63
11	Specific metal ion binding sites in unstructured regions of proteins. Coordination Chemistry Reviews, 2013, 257, 2625-2638.	18.8	63
12	Evaluation of the number of components in multi-component liquid chromatograms of plant extracts. Analytica Chimica Acta, 1986, 191, 261-273.	5.4	62
13	Structural and Dynamic Characterization of Copper(II) Binding of the Human Prion Protein Outside the Octarepeat Region. Chemistry - A European Journal, 2007, 13, 1991-2001.	3.3	60
14	Iron(III) and aluminum(III) complexes with hydroxypyrone ligands aimed to design kojic acid derivatives with new perspectives. Journal of Inorganic Biochemistry, 2010, 104, 560-569.	3.5	55
15	Stochasticâ^'Dispersive Theory of Chromatography. Analytical Chemistry, 1999, 71, 4472-4479.	6.5	54
16	Human diseases related to aluminium overload. Monatshefte Für Chemie, 2011, 142, 331-340.	1.8	53
17	His-rich sequences – is plagiarism from nature a good idea?. New Journal of Chemistry, 2013, 37, 58-70.	2.8	50
18	Cull binding sites located at His-96 and His-111 of the human prion protein: thermodynamic and spectroscopic studies on model peptides. Dalton Transactions, 2008, , 5207.	3.3	49

MAURIZIO REMELLI

#	Article	IF	CITATIONS
19	Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules, 2021, 26, 3255.	3.8	49
20	Stochastic theory of size exclusion chromatography by the characteristic function approach. Journal of Chromatography A, 2002, 943, 185-207.	3.7	46
21	Copper complexes of glycyl-histidyl-lysine and two of its synthetic analogues: chemical behaviour and biological activity. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 199-210.	2.4	45
22	Kojic acid derivatives as powerful chelators for iron(iii) and aluminium(iii). Dalton Transactions, 2011, 40, 5984.	3.3	44
23	The composition of PM 1 and PM 2.5 samples, metals and their water soluble fractions in the Bologna area (Italy). Atmospheric Pollution Research, 2015, 6, 708-718.	3.8	44
24	Copper(ii) 12-metallacrown-4 complexes of α-, β- and γ-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution. Dalton Transactions, 2008, , 2693.	3.3	40
25	Thermodynamics of Self-Assembly of Copper(II) 15-Metallacrown-5 of Eu(III) or Gd(III) with (S)-α-Alaninehydroxamic Acid in Aqueous Solution. Inorganic Chemistry, 2010, 49, 1761-1772.	4.0	40
26	Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coordination Chemistry Reviews, 2016, 327-328, 55-69.	18.8	39
27	The role of His-50 of α-synuclein in binding Cu(ii): pH dependence, speciation, thermodynamics and structure. Metallomics, 2011, 3, 292.	2.4	38
28	Copper(II) complexes with I-lysine and I-ornithine: is the side-chain involved in the coordination?. Thermochimica Acta, 2000, 362, 13-23.	2.7	35
29	Non-covalent interactions in thermodynamic stereoselectivity of mixed-ligand copper(II)-D- or L-histidine complexes with L-amino acids. A possible model of metal ion-assisted molecular recognition. Journal of the Chemical Society Dalton Transactions, 1990, , 2095.	1.1	34
30	Monte Carlo Model of Nonlinear Chromatography. Analytical Chemistry, 2000, 72, 4353-4362.	6.5	33
31	Unexpected impact of the number of glutamine residues on metal complex stability. Metallomics, 2013, 5, 214.	2.4	33
32	Binding and Reactivity of Copper to R ₁ and R ₃ Fragments of tau Protein. Inorganic Chemistry, 2020, 59, 274-286.	4.0	33
33	Study of retention, efficiency and selectivity in chiral ligand-exchange chromatography with a dynamically coated stationary phase. Journal of Chromatography A, 1997, 761, 79-89.	3.7	32
34	Synthesis, Solution Thermodynamics, and X-ray Study of Cull [12]Metallacrown-4 with GABA Hydroxamic Acid: An Unprecedented Crystal Structure of a [12]MC-4 with a Î ³ -Aminohydroxamate. Chemistry - A European Journal, 2007, 13, 1300-1308.	3.3	32
35	Stochastic theory of two-site adsorption chromatography by the characteristic function method. Journal of Separation Science, 1997, 9, 295-302.	1.0	31
36	Interaction of divalent cations with peptide fragments from Parkinson's disease genes. Dalton Transactions, 2013, 42, 5964-5974.	3.3	30

MAURIZIO REMELLI

#	Article	IF	CITATIONS
37	Copper and nickel complex-formation equilibria with Lys–Gly–His–Lys, a fragment of the matricellular protein SPARC. Polyhedron, 2002, 21, 1469-1474.	2.2	29
38	Different approaches to the study of chelating agents for iron and aluminium overload pathologies. Analytical and Bioanalytical Chemistry, 2013, 405, 585-601.	3.7	29
39	The Coordination of Ni ^{II} and Cu ^{II} lons to the Polyhistidyl Motif of Hpn Protein: Is It as Strong as We Think?. Chemistry - A European Journal, 2012, 18, 11088-11099.	3.3	28
40	Cu(ii) ion coordination to the pentadecapeptide model of the SPARC copper-binding site. Dalton Transactions RSC, 2002, , 3939.	2.3	26
41	Unexpected formation of a copper(ii) 12-metallacrown-4 with (S)-glutamic-Î ³ -hydroxamic acid: a thermodynamic and spectroscopic study in aqueous solution. Dalton Transactions, 2004, , 1329-1333.	3.3	26
42	The unusual metal ion binding ability of histidyl tags and their mutated derivatives. Dalton Transactions, 2016, 45, 5629-5639.	3.3	26
43	The unusual binding mechanism of Cu(<scp>ii</scp>) ions to the poly-histidyl domain of a peptide found in the venom of an African viper. Dalton Transactions, 2014, 43, 16680-16689.	3.3	25
44	Copper-ion interaction with the 106–113 domain of the prion protein: a solution-equilibria study on model peptides. Dalton Transactions, 2005, , 2876.	3.3	24
45	Metallacrowns of Ni(ii) with α-aminohydroxamic acids in aqueous solution: beyond a 12-MC-4, an unexpected (vacant?) 15-MC-5. Dalton Transactions, 2011, 40, 2491-2501.	3.3	24
46	HPTLC separation of aromatic α-amino acid enantiomers on a new histidine-based stationary phase using ligand exchange. Chromatographia, 1991, 32, 278-284.	1.3	23
47	The complex-formation behaviour of His residues in the fifth Cu2+ binding site of human prion protein: a close look. New Journal of Chemistry, 2009, 33, 2300.	2.8	23
48	Thermodynamic and spectroscopic investigation on the role of Met residues in Cull binding to the non-octarepeat site of the human prion protein. Metallomics, 2012, 4, 794.	2.4	22
49	Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules, 2022, 27, 4584.	3.8	22
50	Characterization of extracolumn and concentration-dependent distortion of chromatographic peaks by Edgeworth—Cramér series. Journal of Chromatography A, 1984, 315, 67-73.	3.7	20
51	Copper complexes of dipeptides with l-Lys as C-terminal residue: a thermodynamic and spectroscopic study. Polyhedron, 2000, 19, 2409-2419.	2.2	20
52	The possible role of Gly residues in the prion octarepeat region in the coordination of Cu2+ ions. Dalton Transactions, 2003, , 619-624.	3.3	20
53	Cu(ii) ion coordination to SPARC: a model study on short peptide fragments. New Journal of Chemistry, 2003, 27, 245-250.	2.8	18
54	Fluidic and syringe injection study by peak shape analysis. Analytical Chemistry, 1989, 61, 1489-1493.	6.5	17

MAURIZIO REMELLI

#	Article	IF	CITATIONS
55	The peculiar behavior of Picha in the formation of metallacrown complexes with Cu(<scp>ii</scp>), Ni(<scp>ii</scp>) and Zn(<scp>ii</scp>) in aqueous solution. Dalton Transactions, 2015, 44, 3237-3250.	3.3	17
56	Bioinorganic chemistry of calcitermin – the picklock of its antimicrobial activity. Dalton Transactions, 2019, 48, 13740-13752.	3.3	17
57	Copper(ii) coordination outside the tandem repeat region of an unstructured domain of chicken prion protein. Molecular BioSystems, 2009, 5, 497.	2.9	16
58	Manganism and Parkinson's disease: Mn(<scp>ii</scp>) and Zn(<scp>ii</scp>) interaction with a 30-amino acid fragment. Dalton Transactions, 2016, 45, 5151-5161.	3.3	16
59	Exploiting thermodynamic data to optimize the enantioseparation of underivatized amino acids in ligand exchange capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2013, 405, 951-959.	3.7	15
60	Binary and ternary copper(II) complexes of Nï"- and NÏ€-methyl-L-histidine in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1994, , 2049-2056.	1.1	14
61	Ni(II) complexes of dipeptides: a thermodynamic and spectroscopic study. Polyhedron, 2001, 20, 615-621.	2.2	13
62	The unusual stabilization of the Ni ²⁺ and Cu ²⁺ complexes with NSFRY. Dalton Transactions, 2013, 42, 448-458.	3.3	13
63	Formation equilibria of nickel complexes with glycyl-histidyl-lysine and two synthetic analogues. Journal of Inorganic Biochemistry, 2004, 98, 153-160.	3.5	12
64	Zn(II) and Ni(II) complexes with poly-histidyl peptides derived from a snake venom. Inorganica Chimica Acta, 2018, 472, 149-156.	2.4	12
65	Stoichiometric diversity of Ni(ii) metallacrowns with \hat{l}^2 -alaninehydroxamic acid in aqueous solution. Dalton Transactions, 2013, 42, 8018.	3.3	11
66	Cull Ion Coordination to an Unprotected Pentadecapeptide Containing Two His Residues: Competition Between the Terminal Amino and the Side-Chain Imidazole Nitrogen Donors. European Journal of Inorganic Chemistry, 2003, 2003, 1694-1702.	2.0	10
67	Thermodynamic and spectroscopic study of Cu(<scp>ii</scp>) and Zn(<scp>ii</scp>) complexes with the (148–156) peptide fragment of C4YJH2, a putative metal transporter of <i>Candida albicans</i> . Metallomics, 2019, 11, 1988-1998.	2.4	10
68	Novel insights into the metal binding ability of ZinT periplasmic protein from Escherichia coli and Salmonella enterica. Dalton Transactions, 2020, 49, 9393-9403.	3.3	10
69	Peak-shape analysis and noise evaluation in suppressed ion chromatography for ultra-trace ion analysis. Journal of Chromatography A, 1991, 556, 249-262.	3.7	9
70	Dilution enthalpies of alkanols in concentrated aqueous solutions of urea at 25�C. Journal of Solution Chemistry, 1993, 22, 695-706.	1.2	9
71	How Zinc-Binding Systems, Expressed by Human Pathogens, Acquire Zinc from the Colonized Host Environment: A Critical Review on Zincophores. Current Medicinal Chemistry, 2021, 28, 7312-7338.	2.4	9
72	Zn2+ and Cu2+ Binding to the Extramembrane Loop of Zrt2, a Zinc Transporter of Candida albicans. Biomolecules, 2022, 12, 121.	4.0	9

#	Article	IF	CITATIONS
73	Synthesis of spinacine and spinacine derivatives: crystal and molecular structures of Ni€-hydroxymethyl spinacine and Nî±-methyl spinaceamine. Journal of Chemical Crystallography, 1991, 27, 507-513.	1.1	8
74	Cu(II) coordination to His-containing linear peptides and related branched ones: Equalities and diversities. Journal of Inorganic Biochemistry, 2020, 205, 110980.	3.5	8
75	The N-terminal domain of Helicobacter pylori's Hpn protein: The role of multiple histidine residues. Journal of Inorganic Biochemistry, 2021, 214, 111304.	3.5	8
76	Thermodynamic Stability and Speciation of Ga(III) and Zr(IV) Complexes with High-Denticity Hydroxamate Chelators. Inorganic Chemistry, 2021, 60, 13332-13347.	4.0	7
77	Aluminium-dependent human diseases and chelating properties of aluminium chelators for biomedical applications. , 2012, , 103-123.		7
78	Solute - solute - solvent interactions in dilute ternary aqueous solutions of urea and α,ï‰-aliphatic diols. Thermochimica Acta, 1988, 137, 165-176.	2.7	6
79	Enthalpies of dilution of bifunctional alcohols in concentrated aqueous solutions of urea at 298.15 K. Thermochimica Acta, 1990, 162, 241-251.	2.7	6
80	AGHLDDLPGALSAL: A hemoglobin fragment potentially competing with albumin to bind transition metal ions. Journal of Inorganic Biochemistry, 2016, 163, 301-310.	3.5	6
81	Investigation on the metal binding sites of a putative Zn(<scp>ii</scp>) transporter in opportunistic yeast species <i>Candida albicans</i> . New Journal of Chemistry, 2018, 42, 8123-8130.	2.8	6
82	Chiral Ligandâ€Exchange Resolution of Underivatized Amino Acids on a Dynamically Modified Stationary Phase for RPâ€HPTLC. Chirality, 2014, 26, 313-318.	2.6	5
83	Direct chiral resolution of underivatized amino acids on a stationary phase dynamically modified with the ionâ€exchanger <i>N</i> ^{ï"} â€decylâ€ <scp>l</scp> â€spinacine. Journal of Separation Scienc 2015, 38, 894-900.	e 2. 5	5
84	DOES hemopressin bind metal ions in vivo?. Dalton Transactions, 2016, 45, 18267-18280.	3.3	5
85	Chiral Ligand-Exchange Chromatography of Pharmaceutical Compounds on Dynamically Coated (Home-Made) Stationary Phases. Current Medicinal Chemistry, 2017, 24, 818-828.	2.4	5
86	Looking at new ligands for chelation therapy. New Journal of Chemistry, 2018, 42, 8021-8034.	2.8	3