Rudi Beyaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5126407/publications.pdf

Version: 2024-02-01

3731 5255 30,943 299 89 165 citations h-index g-index papers 307 307 307 35764 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut, 2022, 71, 129-147.	12.1	88
2	Reprogramming of glucocorticoid receptor function by hypoxia. EMBO Reports, 2022, 23, e53083.	4.5	7
3	TIM3+ <i> TRBV11-2</i> T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. Journal of Experimental Medicine, 2022, 219, .	8.5	57
4	Mutations in RNU7-1 Weaken Secondary RNA Structure, Induce MCP-1 and CXCL10 in CSF, and Result in Aicardi-Goutià res Syndrome with Severe End-Organ Involvement. Journal of Clinical Immunology, 2022, 42, 962-974.	3.8	8
5	Tumor-educated Tregs drive organ-specific metastasis in breast cancer by impairing NK cells in the lymph node niche. Cell Reports, 2022, 38, 110447.	6.4	23
6	Engineering a highly sensitive biosensor for abscisic acid in mammalian cells. FEBS Letters, 2022, 596, 2576-2590.	2.8	2
7	Defining the combinatorial space of PKC::CARDâ€CC signal transduction nodes. FEBS Journal, 2021, 288, 1630-1647.	4.7	16
8	Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Frontiers in Immunology, 2021, 12, 631797.	4.8	8
9	Analysis of TÂcells in mouse lymphoid tissue and blood with flow cytometry. STAR Protocols, 2021, 2, 100351.	1.2	7
10	ZBTB32 performs crosstalk with the glucocorticoid receptor and is crucial in glucocorticoid responses to starvation. IScience, 2021, 24, 102790.	4.1	1
11	Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Frontiers in Immunology, 2021, 12, 684085.	4.8	13
12	IL-33trap-mediated IL-33 neutralization does not exacerbate choroidal neovascularization, but fails to protect against retinal degeneration in a dry age-related macular degeneration model. Experimental Eye Research, 2021, 207, 108608.	2.6	0
13	Cyclin D2 overexpression drives B1a-derived MCL-like lymphoma in mice. Journal of Experimental Medicine, 2021, 218, .	8.5	12
14	Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochemical Pharmacology, 2021, 193, 114747.	4.4	71
15	Immune responses and therapeutic options in psoriasis. Cellular and Molecular Life Sciences, 2021, 78, 2709-2727.	5 . 4	25
16	Fragility can be a good thing in cancer. Nature Immunology, 2020, 21, 11-13.	14.5	3
17	Long-Term MALT1 Inhibition in Adult Mice Without Severe Systemic Autoimmunity. IScience, 2020, 23, 101557.	4.1	14
18	Single-Chain Soluble Receptor Fusion Proteins as Versatile Cytokine Inhibitors. Frontiers in Immunology, 2020, 11, 1422.	4.8	7

#	Article	IF	CITATIONS
19	Dominant-negative mutations in human <i>IL6ST</i> underlie hyper-lgE syndrome. Journal of Experimental Medicine, 2020, 217, .	8.5	64
20	<scp>MALT</scp> 1 targeting suppresses <scp>CARD</scp> 14â€induced psoriatic dermatitis in mice. EMBO Reports, 2020, 21, e49237.	4.5	18
21	Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nature Immunology, 2020, 21, 381-387.	14.5	47
22	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
23	Phytohormones: Multifunctional nutraceuticals against metabolic syndrome and comorbid diseases. Biochemical Pharmacology, 2020, 175, 113866.	4.4	15
24	Taking the STING Out of Sepsis?. Cell Host and Microbe, 2020, 27, 491-493.	11.0	1
25	ST2 as checkpoint target for colorectal cancer immunotherapy. JCI Insight, 2020, 5, .	5.0	29
26	Zinc inhibits lethal inflammatory shock by preventing microbeâ€induced interferon signature in intestinal epithelium. EMBO Molecular Medicine, 2020, 12, e11917.	6.9	14
27	MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner. Frontiers in Immunology, 2019, 10, 1898.	4.8	38
28	Deletion of <scp>Mucosaâ€Associated Lymphoid Tissue Lymphoma Translocation Protein</scp> 1 in Mouse T Cells Protects Against Development of Autoimmune Arthritis but Leads to Spontaneous Osteoporosis. Arthritis and Rheumatology, 2019, 71, 2005-2015.	5.6	11
29	MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. Frontiers in Immunology, 2019, 10, 2330.	4.8	22
30	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
31	A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation. Nature Communications, 2019, 10, 4779.	12.8	43
32	Engineering a minimal cloning vector from a pUC18 plasmid backbone with an extended multiple cloning site. BioTechniques, 2019, 66, 254-259.	1.8	17
33	TNF- $\hat{l}\pm$ inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12942-12951.	7.1	41
34	Spatiotemporal Changes of the Phagosomal Proteome in Dendritic Cells in Response to LPS Stimulation*. Molecular and Cellular Proteomics, 2019, 18, 909a-922.	3.8	19
35	IL-33trap is a novel IL-33–neutralizing biologic that inhibits allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2019, 144, 204-215.	2.9	45
36	Ubiquitination and phosphorylation of the CARD11-BCL10-MALT1 signalosome in T cells. Cellular Immunology, 2019, 340, 103877.	3.0	37

#	Article	IF	CITATIONS
37	Structure–Activity Relationship in Monosaccharide-Based Toll-Like Receptor 4 (TLR4) Antagonists. Journal of Medicinal Chemistry, 2018, 61, 2895-2909.	6.4	51
38	GC Content of Early Metazoan Genes and Its Impact on Gene Expression Levels in Mammalian Cell Lines. Genome Biology and Evolution, 2018, 10, 909-917.	2.5	10
39	The E3 ubiquitin ligases HOIP and cIAP1 are recruited to the TNFR2 signaling complex and mediate TNFR2-induced canonical NF-ÎB signaling. Biochemical Pharmacology, 2018, 153, 292-298.	4.4	27
40	MALT1 Controls Attenuated Rabies Virus by Inducing Early Inflammation and T Cell Activation in the Brain. Journal of Virology, 2018, 92, .	3.4	14
41	Dichotomous function of IL-33 in health and disease: From biology to clinical implications. Biochemical Pharmacology, 2018, 148, 238-252.	4.4	39
42	How Good Roommates Can Protect against Microbial Sepsis. Cell Host and Microbe, 2018, 23, 283-285.	11.0	7
43	Synthetic glycan-based TLR4 agonists targeting caspase-4/11 for the development of adjuvants and immunotherapeutics. Chemical Science, 2018, 9, 3957-3963.	7.4	17
44	The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus –derived serine protease–like protein D. Journal of Allergy and Clinical Immunology, 2018, 141, 549-559.e7.	2.9	109
45	A CARD9 Founder Mutation Disrupts NF-κB Signaling by Inhibiting BCL10 and MALT1 Recruitment and Signalosome Formation. Frontiers in Immunology, 2018, 9, 2366.	4.8	46
46	Molecular mechanisms of IL-33–mediated stromal interactions in cancer metastasis. JCI Insight, 2018, 3,	5.0	82
47	Mepazine Inhibits RANK-Induced Osteoclastogenesis Independent of Its MALT1 Inhibitory Function. Molecules, 2018, 23, 3144.	3.8	17
48	Disaccharideâ€Based Anionic Amphiphiles as Potent Inhibitors of Lipopolysaccharideâ€Induced Inflammation. ChemMedChem, 2018, 13, 2317-2331.	3.2	15
49	A screening assay for Selective Dimerizing Glucocorticoid Receptor Agonists and Modulators (SEDIGRAM) that are effective against acute inflammation. Scientific Reports, 2018, 8, 12894.	3.3	17
50	Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells, 2018, 7, 122.	4.1	61
51	<scp>IL</scp> â€33 signalling contributes to pollutantâ€induced allergic airway inflammation. Clinical and Experimental Allergy, 2018, 48, 1665-1675.	2.9	35
52	Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. Journal of Virology, 2018, 92, .	3.4	10
53	Ancient Origin of the CARD–Coiled Coil/Bcl10/MALT1-Like Paracaspase Signaling Complex Indicates Unknown Critical Functions. Frontiers in Immunology, 2018, 9, 1136.	4.8	35
54	Importance of Validating Antibodies and Small Compound Inhibitors Using Genetic Knockout Studiesâ€"T Cell Receptor-Induced CYLD Phosphorylation by IKKε/TBK1 as a Case Study. Frontiers in Cell and Developmental Biology, 2018, 6, 40.	3.7	16

#	Article	IF	Citations
55	Psoriasis Plays a Wild CARD. Journal of Investigative Dermatology, 2018, 138, 1903-1905.	0.7	2
56	Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. Journal of Clinical Investigation, 2018, 128, 3265-3279.	8.2	52
57	A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Annals of the Rheumatic Diseases, 2017, 76, 585-592.	0.9	66
58	Impact of caspase- $1/11$, -3, -7, or IL- $1\hat{l}^2/IL$ -18 deficiency on rabies virus-induced macrophage cell death and onset of disease. Cell Death Discovery, 2017, 3, 17012.	4.7	21
59	Patterns, Receptors, and Signals: Regulation of Phagosome Maturation. Trends in Immunology, 2017, 38, 407-422.	6.8	191
60	CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death and Differentiation, 2017, 24, 1172-1183.	11.2	205
61	Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nature Communications, 2017, 8, 14937.	12.8	115
62	CARD14-Mediated Activation of Paracaspase MALT1 in Keratinocytes: Implications for Psoriasis. Journal of Investigative Dermatology, 2017, 137, 569-575.	0.7	30
63	A20 Restrains Thymic Regulatory T Cell Development. Journal of Immunology, 2017, 199, 2356-2365.	0.8	29
64	A20 deletion in TÂcells modulates acute graftâ€versusâ€host disease in mice. European Journal of Immunology, 2017, 47, 1982-1988.	2.9	9
65	Limiting inflammationâ€"the negative regulation of NF-κB and the NLRP3 inflammasome. Nature Immunology, 2017, 18, 861-869.	14.5	546
66	Abscisic Acid as Pathogen Effector and Immune Regulator. Frontiers in Plant Science, 2017, 8, 587.	3.6	145
67	IL-17 Signaling Triggers Degradation of the Constitutive NF-κB Inhibitor ABIN-1. ImmunoHorizons, 2017, 1, 133-141.	1.8	16
68	A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathogens, 2016, 12, e1005410.	4.7	50
69	Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. Immunity, 2016, 45, 1285-1298.	14.3	271
70	<scp>MALT</scp> 1 cleaves the E3 ubiquitin ligase <scp>HOIL</scp> â€1 in activated T cells, generating a dominant negative inhibitor of <scp>LUBAC</scp> â€induced <scp>NF</scp> â€PB signaling. FEBS Journal, 2016, 283, 403-412.	4.7	68
71	Monitoring Ubiquitin-Coated Bacteria via Confocal Microscopy. Methods in Molecular Biology, 2016, 1449, 243-250.	0.9	4
72	NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. Journal of Experimental Medicine, 2016, 213, 1973-1981.	8.5	31

#	Article	IF	Citations
73	The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nature Communications, 2016, 7, 11385.	12.8	117
74	The paracaspase <scp>MALT</scp> 1 mediates <scp>CARD</scp> 14â€induced signaling in keratinocytes. EMBO Reports, 2016, 17, 914-927.	4.5	71
75	A20 prevents chronic liver inflammation and cancer by protecting hepatocytes from death. Cell Death and Disease, 2016, 7, e2250-e2250.	6.3	54
76	Optineurin deficiency in mice is associated with increased sensitivity to <i>Salmonella</i> but does not affect proinflammatory NFâ€PB signaling. European Journal of Immunology, 2016, 46, 971-980.	2.9	69
77	Targeting MALT1 Proteolytic Activity in Immunity, Inflammation and Disease: Good or Bad?. Trends in Molecular Medicine, 2016, 22, 135-150.	6.7	67
78	TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochemical Pharmacology, 2016, 116, 1-10.	4.4	151
79	Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity, 2016, 44, 755-768.	14.3	478
80	Trabid epigenetically drives expression of IL-12 and IL-23. Nature Immunology, 2016, 17, 227-228.	14.5	5
81	A20 Inhibits \hat{I}^2 -Cell Apoptosis by Multiple Mechanisms and Predicts Residual \hat{I}^2 -Cell Function in Type 1 Diabetes. Molecular Endocrinology, 2016, 30, 48-61.	3.7	28
82	MALT1 is not alone after all: identification of novel paracaspases. Cellular and Molecular Life Sciences, 2016, 73, 1103-1116.	5.4	39
83	The multifaceted role of the E3 ubiquitin ligase <scp>HOIL</scp> â€1: beyond linear ubiquitination. Immunological Reviews, 2015, 266, 208-221.	6.0	50
84	Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of MO/M2 Phenotype Switch. PLoS ONE, 2015, 10, e0117398.	2.5	28
85	<scp>MALT</scp> 1 – a universal soldier: multiple strategies to ensure <scp>NF</scp> â€P̂B activation and target gene expression. FEBS Journal, 2015, 282, 3286-3297.	4.7	67
86	Toll-like Receptor 4 Engagement on Dendritic Cells Restrains Phago-Lysosome Fusion and Promotes Cross-Presentation of Antigens. Immunity, 2015, 43, 1087-1100.	14.3	160
87	MicroRNA let-7 Modulates the Immune Response to Mycobacterium tuberculosis Infection via Control of A20, an Inhibitor of the NF-κB Pathway. Cell Host and Microbe, 2015, 17, 345-356.	11.0	230
88	Chemical Synthesis of <i>Burkholderia</i> Lipidâ€A Modified with Glycosyl Phosphodiesterâ€Linked 4â€Aminoâ€4â€deoxyâ€Î²â€ <scp>L</scp> â€arabinose and Its Immunomodulatory Potential. Chemistry - A Europ Journal, 2015, 21, 4102-4114.	e 3 r8	18
89	Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. Immunity, 2015, 42, 991-1004.	14.3	385
90	Anti-endotoxic activity and structural basis for human MD-2·TLR4 antagonism of tetraacylated lipid A mimetics based on î²GlcN(1↔1)î±GlcN scaffold. Innate Immunity, 2015, 21, 490-503.	2.4	15

#	Article	IF	CITATIONS
91	A20 deficiency sensitizes pancreatic beta cells to cytokine-induced apoptosis in vitro but does not influence type 1 diabetes development in vivo. Cell Death and Disease, 2015, 6, e1918-e1918.	6.3	15
92	Interleukin-21-Producing CD4+ T Cells Promote Type 2 Immunity to House Dust Mites. Immunity, 2015, 43, 318-330.	14.3	132
93	Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science, 2015, 349, 1106-1110.	12.6	483
94	XEDAR activates the non-canonical NF- \hat{l}° B pathway. Biochemical and Biophysical Research Communications, 2015, 465, 275-280.	2.1	23
95	Role of the Bacterial Type VI Secretion System in the Modulation of Mammalian Host Cell Immunity. Current Medicinal Chemistry, 2015, 22, 1734-1744.	2.4	5
96	A20-Deficient Mast Cells Exacerbate Inflammatory Responses In Vivo. PLoS Biology, 2014, 12, e1001762.	5.6	62
97	Priming IKKβ kinase for action. Biochemical Journal, 2014, 463, e1-e2.	3.7	1
98	Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochemical Pharmacology, 2014, 92, 519-529.	4.4	47
99	Pharmacological inhibition of MALT1 protease activity protects mice in a mouse model of multiple sclerosis. Journal of Neuroinflammation, 2014, 11, 124.	7.2	76
100	A20 in inflammation and autoimmunity. Trends in Immunology, 2014, 35, 22-31.	6.8	373
101	IL-33 targeting attenuates intestinal mucositis and enhances effective tumor chemotherapy in mice. Mucosal Immunology, 2014, 7, 1079-1093.	6.0	73
102	A20: attractive without showing cleavage. EMBO Reports, 2014, 15, 734-735.	4.5	12
103	The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11115-11120.	7.1	79
104	Development of $\hat{l}\pm GlcN(1\hat{a}\dagger^*1)\hat{l}\pm Man$ -Based Lipid A Mimetics as a Novel Class of Potent Toll-like Receptor 4 Agonists. Journal of Medicinal Chemistry, 2014, 57, 8056-8071.	6.4	25
105	A20 controls intestinal homeostasis through cell-specific activities. Nature Communications, 2014, 5, 5103.	12.8	109
106	Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature, 2014, 512, 69-73.	27.8	419
107	An E3 ubiquitin ligase-independent role of LUBAC. Blood, 2014, 123, 2131-2133.	1.4	4
108	The Biology of A20-Binding Inhibitors of NF-κB Activation (ABINS). Advances in Experimental Medicine and Biology, 2014, 809, 13-31.	1.6	35

#	Article	IF	CITATIONS
109	Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends in Molecular Medicine, 2013, 19, 604-613.	6.7	122
110	Cancer risk in immune-mediated inflammatory diseases (IMID). Molecular Cancer, 2013, 12, 98.	19.2	104
111	lîºB kinase É› (IKKÉ›): A therapeutic target in inflammation and cancer. Biochemical Pharmacology, 2013, 85, 873-880.	4.4	90
112	Paracaspase MALT1 Deficiency Protects Mice from Autoimmune-Mediated Demyelination. Journal of Immunology, 2013, 190, 2896-2903.	0.8	68
113	The ubiquitin editing enzyme A20 (TNFAIP3) is upregulated during permanent middle cerebral artery occlusion but does not influence disease outcome. Cell Death and Disease, 2013, 4, e531-e531.	6.3	6
114	A20 (Tnfaip3) Deficiency in Myeloid Cells Protects against Influenza A Virus Infection. PLoS Pathogens, 2012, 8, e1002570.	4.7	70
115	A20 and CYLD Do Not Share Significant Overlapping Functions during B Cell Development and Activation. Journal of Immunology, 2012, 189, 4437-4443.	0.8	24
116	A20 inhibits LUBAC-mediated NF- \hat{l}^{P} B activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO Journal, 2012, 31, 3845-3855.	7.8	176
117	Identification of Interaction Sites for Dimerization and Adapter Recruitment in Toll/Interleukin-1 Receptor (TIR) Domain of Toll-like Receptor 4. Journal of Biological Chemistry, 2012, 287, 4088-4098.	3.4	63
118	Emerging Role of Ubiquitination in Antiviral RIG-I Signaling. Microbiology and Molecular Biology Reviews, 2012, 76, 33-45.	6.6	80
119	Structure and Function of the Type III Secretion System of Pseudomonas aeruginosa. Current Protein and Peptide Science, 2012, 13, 831-842.	1.4	99
120	A Two-Step Activation Mechanism of MALT1 Paracaspase. Journal of Molecular Biology, 2012, 419, 1-3.	4.2	7
121	No Ubiquitin Anchors and Fully RIGged. Immunity, 2012, 36, 897-899.	14.3	0
122	The p $110\hat{l}$ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nature Immunology, 2012, 13, 1045-1054.	14.5	163
123	The Pseudomonas aeruginosa Type III Secretion System Has an Exotoxin S/T/Y Independent Pathogenic Role during Acute Lung Infection. PLoS ONE, 2012, 7, e41547.	2.5	34
124	Interleukin- $1\hat{l}\pm$ controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. Journal of Experimental Medicine, 2012, 209, 1505-1517.	8.5	362
125	Negative regulation of NF- $\hat{\mathbb{P}}$ B and its involvement in rheumatoid arthritis. Arthritis Research and Therapy, 2011, 13, 221.	3.5	63
126	Genetic relationships between <i>A20/TNFAIP3</i> , chronic inflammation and autoimmune disease. Biochemical Society Transactions, 2011, 39, 1086-1091.	3.4	99

#	Article	IF	Citations
127	A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nature Genetics, 2011, 43, 908-912.	21.4	250
128	Regulation of TNF-induced NF-κB activation by different cytoplasmic ubiquitination events. Cytokine and Growth Factor Reviews, 2011, 22, 277-286.	7.2	55
129	Regulation of NF-κB signaling by caspases and MALT1 paracaspase. Cell Research, 2011, 21, 40-54.	12.0	83
130	Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends in Molecular Medicine, 2011, 17, 584-593.	6.7	121
131	Death receptor signalling in central nervous system inflammation and demyelination. Trends in Neurosciences, 2011, 34, 619-628.	8.6	50
132	The kinase NIK as a therapeutic target in multiple myeloma. Expert Opinion on Therapeutic Targets, 2011, 15, 207-218.	3.4	17
133	B cells lacking the tumor suppressor TNFAIP3/A20 display impaired differentiation and hyperactivation and cause inflammation and autoimmunity in aged mice. Blood, 2011, 117, 2227-2236.	1.4	165
134	T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO Journal, 2011, 30, 1742-1752.	7.8	196
135	Keratinocyte-specific ablation of the NF-ΰB regulatory protein A20 (TNFAIP3) reveals a role in the control of epidermal homeostasis. Cell Death and Differentiation, 2011, 18, 1845-1853.	11.2	77
136	TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends in Biochemical Sciences, 2011, 36, 347-54.	7.5	52
137	Linear ubiquitination in NF- \hat{l}° B signaling and inflammation: What we do understand and what we do not. Biochemical Pharmacology, 2011, 82, 1057-1065.	4.4	17
138	The Ubiquitin-Editing Protein A20 Prevents Dendritic Cell Activation, Recognition of Apoptotic Cells, and Systemic Autoimmunity. Immunity, 2011, 35, 82-96.	14.3	222
139	Neu1 Sialidase and Matrix Metalloproteinase-9 Cross-talk Is Essential for Toll-like Receptor Activation and Cellular Signaling. Journal of Biological Chemistry, 2011, 286, 36532-36549.	3.4	7 5
140	SHP works a double shift to control TLR signaling. Nature Immunology, 2011, 12, 725-727.	14.5	6
141	Caspaseâ€11 mediates ischemiaâ€induced astrocyte death: Involvement of endoplasmic reticulum stress and C/EBP homologous protein. Journal of Neuroscience Research, 2010, 88, 1094-1105.	2.9	16
142	Pharmacodynamics of tepoxalin, sodium-salicylate and ketoprofen in an intravenous lipopolysaccharide inflammation model in broiler chickens. Journal of Veterinary Pharmacology and Therapeutics, 2010, 33, 564-572.	1.3	20
143	Thymoquinone from nutraceutical black cumin oil activates Neu4 sialidase in live macrophage, dendritic, and normal and type I sialidosis human fibroblast cells via GPCR Gαi proteins and matrix metalloproteinase-9. Glycoconjugate Journal, 2010, 27, 329-348.	2.7	23
144	Thymoquinone-induced Neu4 sialidase activates NFκB in macrophage cells and pro-inflammatory cytokines in vivo. Glycoconjugate Journal, 2010, 27, 583-600.	2.7	20

#	Article	IF	Citations
145	Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochemical Pharmacology, 2010, 80, 2009-2020.	4.4	173
146	Neu1 desialylation of sialyl \hat{l} ±-2,3-linked \hat{l}^2 -galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling. Cellular Signalling, 2010, 22, 314-324.	3 . 6	169
147	Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor–induced toxicity and experimental colitis. Journal of Experimental Medicine, 2010, 207, 1513-1523.	8.5	261
148	Endoplasmic reticulum chaperone gp96 is essential for infection with vesicular stomatitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6970-6975.	7.1	44
149	Caspase-1 targets the TLR adaptor Mal at a crucial TIR-domain interaction site. Journal of Cell Science, 2010, 123, 256-265.	2.0	28
150	Oligodendrocyte-Specific FADD Deletion Protects Mice from Autoimmune-Mediated Demyelination. Journal of Immunology, 2010, 185, 7646-7653.	0.8	57
151	Antiinflammatory Properties of a Plant-Derived Nonsteroidal, Dissociated Glucocorticoid Receptor Modulator in Experimental Autoimmune Encephalomyelitis. Molecular Endocrinology, 2010, 24, 310-322.	3.7	55
152	Cleavage by MALT1 induces cytosolic release of A20. Biochemical and Biophysical Research Communications, 2010, 400, 543-547.	2.1	25
153	In Macrophages, Caspase-1 Activation by SopE and the Type III Secretion System-1 of S. Typhimurium Can Proceed in the Absence of Flagellin. PLoS ONE, 2010, 5, e12477.	2.5	34
154	Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor–induced toxicity and experimental colitis. Journal of Cell Biology, 2010, 189, i15-i15.	5.2	0
155	Characterization of an intravenous lipopolysaccharide inflammation model in broiler chickens. Avian Pathology, 2009, 38, 403-411.	2.0	41
156	Attenuated Expression of A20 Markedly Increases the Efficacy of Double-Stranded RNA-Activated Dendritic Cells As an Anti-Cancer Vaccine. Journal of Immunology, 2009, 182, 860-870.	0.8	64
157	A20: Central Gatekeeper in Inflammation and Immunity. Journal of Biological Chemistry, 2009, 284, 8217-8221.	3.4	278
158	ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling. Biochemical Pharmacology, 2009, 78, 105-114.	4.4	155
159	Dependence of pathogen molecule-induced Toll-like receptor activation and cell function on Neu1 sialidase. Glycoconjugate Journal, 2009, 26, 1197-1212.	2.7	108
160	Translational control of eukaryotic gene expression. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 143-168.	5 . 2	112
161	The S. Typhimurium Effector SopE Induces Caspase-1 Activation in Stromal Cells to Initiate Gut Inflammation. Cell Host and Microbe, 2009, 6, 125-136.	11.0	135
162	The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends in Immunology, 2009, 30, 383-391.	6.8	450

#	Article	IF	Citations
163	High-fat nutrition reduces hepatic damage following exposure to bacterial DNA and hemorrhagic shock. Journal of Hepatology, 2009, 50, 342-350.	3.7	16
164	MAPPIT (Mammalian Protein–Protein Interaction Trap) Analysis of Early Steps in Toll-Like Receptor Signalling. Methods in Molecular Biology, 2009, 517, 133-144.	0.9	11
165	Targeting the EGF receptor ectodomain in the context of cancer. Expert Opinion on Therapeutic Targets, 2009, 13, 1347-1361.	3.4	1
166	Cellular Expression of A20 and ABIN-3 in Response to Toll-Like Receptor-4 Stimulation. Methods in Molecular Biology, 2009, 517, 205-215.	0.9	0
167	Expression of the NFâ€̂B inhibitor ABINâ€3 in response to TNF and tollâ€like receptor 4 stimulation is itself regulated by NFâ€̂B. Journal of Cellular and Molecular Medicine, 2008, 12, 316-329.	3.6	28
168	TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cellular and Molecular Life Sciences, 2008, 65, 2964-2978.	5.4	369
169	Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO Journal, 2008, 27, 629-641.	7.8	139
170	Ubiquitin binding mediates the NF-κB inhibitory potential of ABIN proteins. Oncogene, 2008, 27, 3739-3745.	5.9	208
171	ABINs inhibit EGF receptor-mediated NF-κB activation and growth of EGF receptor-overexpressing tumour cells. Oncogene, 2008, 27, 6131-6140.	5.9	31
172	Prolonged exposure to IL- $1\hat{l}^2$ and IFN \hat{l}^3 induces necrosis of L929 tumor cells via a p38MAPK/NF- \hat{l}^9 B/NO-dependent mechanism. Oncogene, 2008, 27, 3780-3788.	5.9	20
173	T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nature Immunology, 2008, 9, 263-271.	14.5	409
174	Non-apoptotic functions of caspase-8. Biochemical Pharmacology, 2008, 76, 1365-1373.	4.4	98
175	The <i>Pseudomonas aeruginosa Type</i> III secretion system plays a dual role in the regulation of caspaseâ€1 mediated ILâ€1β maturation. Journal of Cellular and Molecular Medicine, 2008, 12, 1767-1776.	3.6	102
176	Are the IKKs and IKK-related kinases TBK1 and IKK-É> similarly activated?. Trends in Biochemical Sciences, 2008, 33, 171-180.	7.5	202
177	Smurf2 is a TRAF2 binding protein that triggers TNF-R2 ubiquitination and TNF-R2-induced JNK activation. Biochemical and Biophysical Research Communications, 2008, 374, 752-757.	2.1	16
178	Sensing of Viral Infection and Activation of Innate Immunity by Toll-Like Receptor 3. Clinical Microbiology Reviews, 2008, 21, 13-25.	13.6	274
179	Stimulation of Toll-like receptor 3 and 4 induces interleukin- $1\hat{l}^2$ maturation by caspase-8. Journal of Experimental Medicine, 2008, 205, 1967-1973.	8.5	278
180	The influence of age and repeated lipopolysaccharide administration on body temperature and the concentration of interleukin-6 and IgM antibodies against lipopolysaccharide in broiler chickens. Avian Pathology, 2008, 37, 39-44.	2.0	40

#	Article	IF	Citations
181	A Novel TRAF6 Binding Site in MALT1 Defines Distinct Mechanisms of NF-κB Activation by API2·MALT1 Fusions. Journal of Biological Chemistry, 2007, 282, 10180-10189.	3.4	85
182	Hepatic Tumor Necrosis Factor Signaling and Nuclear Factor-l Beyond. Endocrine Reviews, 2007, 28, 365-386.	20.1	213
183	LIND/ABIN-3 Is a Novel Lipopolysaccharide-inducible Inhibitor of NF-κB Activation. Journal of Biological Chemistry, 2007, 282, 81-90.	3.4	79
184	MAPPIT analysis of TLR adaptor complexes. FEBS Letters, 2007, 581, 629-636.	2.8	25
185	A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO Journal, 2007, 26, 158-169.	7.8	95
186	Inhibition of NF-?B activation by the histone deacetylase inhibitor 4-Me2N-BAVAH induces an early G1cell cycle arrest in primary hepatocytes. Cell Proliferation, 2007, 40, 640-655.	5.3	21
187	Inhibition of NF-ÎB activation by the histone deacetylase inhibitor 4-Me2N-BAVAH induces an early G1cell cycle arrest in primary hepatocytes. Cell Proliferation, 2007, 40, 961-961.	5.3	0
188	Pellino Proteins: Novel Players in TLR and ILâ€1R Signalling. Journal of Cellular and Molecular Medicine, 2007, 11, 453-461.	3.6	87
189	Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: A role as novel RING E3-ubiquitin-ligases. FEBS Letters, 2006, 580, 4697-4702.	2.8	96
190	Ubiquitin: tool and target for intracellular NF-κB inhibitors. Trends in Immunology, 2006, 27, 533-540.	6.8	57
191	TNFα- and IKKβ-mediated TANK/I-TRAF phosphorylation: implications for interaction with NEMO/IKKγ and NF-κB activation. Biochemical Journal, 2006, 394, 593-603.	3.7	30
192	Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients*. Critical Care Medicine, 2006, 34, 2377-2385.	0.9	164
193	A novel link between Lck, Bak expression and chemosensitivity. Oncogene, 2006, 25, 1693-1695.	5.9	8
194	Mechanisms of crosstalk between TNF-induced NF-κB and JNK activation in hepatocytes. Biochemical Pharmacology, 2006, 72, 1090-1101.	4.4	185
195	The polypyrimidine tract-binding protein stimulates HIF-1Â IRES-mediated translation during hypoxia. Nucleic Acids Research, 2005, 33, 6884-6894.	14.5	79
196	Apoptosis of hematopoietic cells induced by growth factor withdrawal is associated with caspase-9 mediated cleavage of Raf-1. Oncogene, 2005, 24, 1552-1562.	5.9	22
197	A20 inhibits NF-κB activation by dual ubiquitin-editing functions. Trends in Biochemical Sciences, 2005, 30, 1-4.	7.5	250
198	Adenoviral gene transfer of ABIN-1 protects mice from TNF/galactosamine-induced acute liver failure and lethality. Hepatology, 2005, 42, 381-389.	7.3	45

#	Article	IF	CITATIONS
199	UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Research, 2005, 33, 3095-3108.	14.5	65
200	Adenoviral Gene Transfer of the NF-κB Inhibitory Protein ABIN-1 Decreases Allergic Airway Inflammation in a Murine Asthma Model. Journal of Biological Chemistry, 2005, 280, 17938-17944.	3.4	39
201	Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2α. Biochemical Journal, 2005, 385, 155-163.	3.7	78
202	The Yeast Three-Hybrid System As a Tool to Study Caspases. , 2004, 282, 243-254.		0
203	Function and Regulation of Tumor Necrosis Factor Receptor Type 2. Current Medicinal Chemistry, 2004, 11, 2205-2212.	2.4	96
204	Yeast Two-Hybrid Screening for Proteins Interacting With the Anti-Apoptotic Protein A20., 2004, 282, 223-242.		9
205	Targeting Rac1 by the Yersinia Effector Protein YopE Inhibits Caspase-1-mediated Maturation and Release of Interleukin- \hat{l}^2 . Journal of Biological Chemistry, 2004, 279, 25134-25142.	3.4	121
206	Nuclear factor-kappa B plays a central role in tumour necrosis factor-mediated liver disease. Biochemical Pharmacology, 2003, 66, 1409-1415.	4.4	57
207	Structure-function analysis of the A20-binding inhibitor of NF-κB activation, ABIN-1. FEBS Letters, 2003, 536, 135-140.	2.8	101
208	MyD88 _S , a splice variant of MyD88, differentially modulates NFâ€Pâ―and APâ€1â€dependent gene expression. FEBS Letters, 2003, 548, 103-107.	2.8	169
209	Functional Diversity and Regulation of Different Interleukin-1 Receptor-Associated Kinase (IRAK) Family Members. Molecular Cell, 2003, 11, 293-302.	9.7	523
210	Inhibition of Interleukin 1 Receptor/Toll-like Receptor Signaling through the Alternatively Spliced, Short Form of MyD88 Is Due to Its Failure to Recruit IRAK-4. Journal of Experimental Medicine, 2003, 197, 263-268.	8.5	447
211	Role of Toll-Like Receptors in Pathogen Recognition. Clinical Microbiology Reviews, 2003, 16, 637-646.	13.6	477
212	A Novel Type of Deubiquitinating Enzyme. Journal of Biological Chemistry, 2003, 278, 23180-23186.	3.4	144
213	NF-κB Activation by Tumor Necrosis Factor and Interleukin-1. , 2003, , 49-67.		О
214	Caspase-11 Gene Expression in Response to Lipopolysaccharide and Interferon-Î ³ Requires Nuclear Factor-Î ⁹ B and Signal Transducer and Activator of Transcription (STAT) 1. Journal of Biological Chemistry, 2002, 277, 41624-41630.	3.4	142
215	Signaling to gene activation and cell death by tumor necrosis factor receptors and fas. International Review of Cytology, 2002, 214, 225-272.	6.2	40
216	Regulation of Interleukin-1- and Lipopolysaccharide-Induced NF-κB Activation by Alternative Splicing of MyD88. Current Biology, 2002, 12, 467-471.	3.9	269

#	Article	IF	Citations
217	A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends in Biochemical Sciences, 2002, 27, 474-482.	7.5	357
218	Reversion of autoimmune lymphoproliferative syndrome with an antimalarial drug: preliminary results of a clinical cohort study and molecular observations. British Journal of Haematology, 2002, 117, 176-188.	2.5	48
219	A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death and Differentiation, 2002, 9, 301-308.	11.2	79
220	Caspases are not localized in mitochondria during life or death. Cell Death and Differentiation, 2002, 9, 1207-1211.	11.2	64
221	Crosstalk between NF-κB-Activating and Apoptosis-Inducing Proteins of the TNF-Receptor Complex. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2001, 4, 259-265.	1.6	73
222	Functional redundancy of the zinc fingers of A20 for inhibition of NF-κB activation and protein-protein interactions. FEBS Letters, 2001, 498, 93-97.	2.8	66
223	Isolation and characterization of two novel A20-like proteins. Biochemical Journal, 2001, 357, 617-623.	3.7	83
224	Isolation and characterization of two novel A20-like proteins. Biochemical Journal, 2001, 357, 617.	3.7	63
225	Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood, 2001, 97, 1378-1387.	1.4	237
226	Dimethylfumarate is an Inhibitor of Cytokine-Induced Nuclear Translocation of NF- \hat{l}° B1, But Not RelA in Normal Human Dermal Fibroblast Cells. Journal of Investigative Dermatology, 2001, 116, 124-130.	0.7	69
227	Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death and Differentiation, 2001, 8, 1136-1142.	11.2	298
228	Lithium Sensitizes Tumor Cells in an NF-κB-independent Way to Caspase Activation and Apoptosis Induced by Tumor Necrosis Factor (TNF). Journal of Biological Chemistry, 2001, 276, 25939-25945.	3.4	34
229	The Cathepsin B Inhibitor z-FA.fmk Inhibits Cytokine Production in Macrophages Stimulated by Lipopolysaccharide. Journal of Biological Chemistry, 2001, 276, 21153-21157.	3.4	34
230	Identification of a Novel A20-binding Inhibitor of Nuclear Factor-κB Activation Termed ABIN-2. Journal of Biological Chemistry, 2001, 276, 30216-30223.	3.4	91
231	Ultrastructural localization of cytochrome c in apoptosis demonstrates mitochondrial heterogeneity. Cell Death and Differentiation, 2000, 7, 331-337.	11.2	47
232	A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochemical Pharmacology, 2000, 60, 1143-1151.	4.4	286
233	ldentification and Characterization of a Novel Cell Cycle–Regulated Internal Ribosome Entry Site. Molecular Cell, 2000, 5, 597-605.	9.7	310
234	The Zinc Finger Protein A20 Inhibits TNF-induced NF-l̂ºB–dependent Gene Expression by Interfering with an RIP- or TRAF2-mediated Transactivation Signal and Directly Binds to a Novel NF-l̂ºB–inhibiting Protein ABIN. Journal of Cell Biology, 1999, 145, 1471-1482.	5.2	275

#	Article	IF	CITATIONS
235	The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene, 1999, 18, 4182-4190.	5.9	133
236	More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene, 1999, 18, 7719-7730.	5.9	790
237	Yeast two-hybrid: State of the art. Biological Procedures Online, 1999, 2, 1-38.	2.9	101
238	APOPTOSIS INDUCED BY \hat{I}^3 IRRADIATION IN PERIPHERAL BLOOD MONONUCLEAR CELLS IS NOT MEDIATED BY CYTOCHROME-C RELEASE AND ONLY PARTIALLY INVOLVES CASPASE-3-LIKE PROTEASES. Cell Biology International, 1999, 23, 611-617.	3.0	5
239	NF-κB as an emerging target in atopy. Expert Opinion on Therapeutic Targets, 1999, 3, 213-228.	1.0	2
240	GAL4 Is a Substrate for Caspases: Implications for Two-Hybrid Screening and Other GAL4-Based Assays. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 158-161.	1.6	7
241	Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Letters, 1999, 442, 117-121.	2.8	274
242	The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF- \hat{l}^2 B activation at the level of TRAF6. FEBS Letters, 1999, 442, 147-150.	2.8	169
243	TRAF1 is a TNF inducible regulator of NF-κB activation. FEBS Letters, 1999, 460, 246-250.	2.8	81
244	Cleavage of transcription factor SP1 by caspases during antiâ€igMâ€induced Bâ€cell apoptosis. FEBS Journal, 1999, 261, 269-274.	0.2	42
245	Alzheimer's Disease Associated Presenilin 1 Interacts with HC5 and ZETA, Subunits of the Catalytic 20S Proteasome. Neurobiology of Disease, 1999, 6, 376-391.	4.4	24
246	Inhibition of tumor necrosis factor-induced necrotic cell death by the zinc finger protein A20. Anticancer Research, 1999, 19, 2863-8.	1.1	31
247	Use of the Yeast Three-Hybrid System as a Tool to Study Caspases. Analytical Biochemistry, 1998, 263, 62-66.	2.4	13
248	Differential activation of phospholipases during necrosis or apoptosis: A comparative study using tumor necrosis factor and anti-Fas antibodies., 1998, 71, 392-399.		35
249	TRAF2 plays a dual role in NF-κB-dependent gene activation by mediating the TNF-induced activation of p38 MAPK and lκB kinase pathways. FEBS Letters, 1998, 425, 195-198.	2.8	56
250	Cathepsin B-Mediated Activation of the Proinflammatory Caspase-11. Biochemical and Biophysical Research Communications, 1998, 251, 379-387.	2.1	137
251	SENSITIZATION OF TNF-INDUCED APOPTOSIS WITH POLYAMINE SYNTHESIS INHIBITORS IN DIFFERENT HUMAN AND MURINE TUMOUR CELL LINES. Cytokine, 1998, 10, 423-431.	3.2	41
252	Inhibition of Caspases Increases the Sensitivity of L929 Cells to Necrosis Mediated by Tumor Necrosis Factor. Journal of Experimental Medicine, 1998, 187, 1477-1485.	8.5	833

#	Article	IF	Citations
253	Tumor Necrosis Factor and Lymphotoxin. , 1998, , 335-360.		45
254	Cleavage of PITSLRE Kinases by ICE/CASP-1 and CPP32/CASP-3 during Apoptosis Induced by Tumor Necrosis Factor. Journal of Biological Chemistry, 1997, 272, 11694-11697.	3.4	132
255	A20 Inhibits NF-κB Activation Independently of Binding to 14-3-3 Proteins. Biochemical and Biophysical Research Communications, 1997, 238, 590-594.	2.1	44
256	DIFFERENTIAL ROLE OF CALCIUM IN TUMOUR NECROSIS FACTOR-MEDIATED APOPTOSIS AND SECRETION OF GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR IN A T CELL HYBRIDOMA. Cytokine, $1997, 9, 631-638$.	3.2	22
257	TUMOUR NECROSIS FACTOR-INDUCED NECROSIS VERSUS ANTI-Fas-INDUCED APOPTOSIS IN L929 CELLS. Cytokine, 1997, 9, 801-808.	3.2	142
258	Characterization of seven murine caspase family members. FEBS Letters, 1997, 403, 61-69.	2.8	191
259	Differential involvement of caspases in apoptosis of myeloid leukemic cells induced by chemotherapy versus growth factor withdrawal. FEBS Letters, 1997, 409, 207-210.	2.8	33
260	Cell death induction by receptors of the TNF family: towards a molecular understanding. FEBS Letters, 1997, 410, 96-106.	2.8	217
261	Resistance to tumor necrosis factor (TNF) cytotoxicity by autocrine TNF production is independent of intracellular signaling pathways. FEBS Letters, 1997, 416, 183-186.	2.8	1
262	Cleavage of caspase family members by granzyme B: a comparative studyin vitro. European Journal of Immunology, 1997, 27, 1296-1299.	2.9	50
263	A20, an inhibitor of cell death, self-associates by its zinc finger domain. FEBS Letters, 1996, 384, 61-64.	2.8	44
264	The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor EMBO Journal, 1996, 15, 1914-1923.	7.8	589
265	Functional Characterization of the Prodomain of Interleukin $1\hat{l}^2$ -converting Enzyme. Journal of Biological Chemistry, 1996, 271, 27245-27248.	3.4	37
266	The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO Journal, 1996, 15, 1914-23.	7.8	147
267	Two tumour necrosis factor receptors: structure and function. Trends in Cell Biology, 1995, 5, 392-399.	7.9	749
268	Casein Kinase-1 Phosphorylates the p75 Tumor Necrosis Factor Receptor and Negatively Regulates Tumor Necrosis Factor Signaling for Apoptosis. Journal of Biological Chemistry, 1995, 270, 23293-23299.	3.4	72
269	Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. FEBS Letters, 1994, 340, 9-16.	2.8	232
270	Tumor necrosis factor cytotoxicity is associated with phospholipase D activation. FEBS Journal, 1993, 212, 491-497.	0.2	29

#	Article	IF	CITATIONS
271	Two Pathways of Tumor Necrosis Factor Signal Transduction: In vitro and in vivo Implications. , 1993, , 58-65.		O
272	Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF EMBO Journal, 1993, 12, 3095-3104.	7.8	510
273	Tumor Necrosis Factor Cytotoxicity is Associated with Activation of Cellular Phospholipases., 1993,, 29-37.		0
274	Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO Journal, 1993, 12, 3095-104.	7.8	146
275	Enhancement of tumor necrosis factor cytotoxicity by lithium chloride is associated with increased inositol phosphate accumulation. Journal of Immunology, 1993, 151, 291-300.	0.8	25
276	Effect of bcl-2 proto-oncogene expression on cellular sensitivity to tumor necrosis factor-mediated cytotoxicity. Oncogene, 1993, 8, 1075-81.	5.9	78
277	Sensitization of tumor cells to tumor necrosis factor action by the protein kinase inhibitor staurosporine. Cancer Research, 1993, 53, 2623-30.	0.9	23
278	Synergistic induction of interleukin-6 by tumor necrosis factor and lithium chloride in mice: Possible role in the triggering and exacerbation of psoriasis by lithium treatment. European Journal of Immunology, 1992, 22, 2181-2184.	2.9	41
279	Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation Journal of Biological Chemistry, 1992, 267, 5317-5323.	3.4	847
280	Tumor Necrosis Factor: Mechanism of Action and its Potential for Anticancer Therapy., 1992, , 119-125.		0
281	Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. Journal of Biological Chemistry, 1992, 267, 5317-23.	3.4	704
282	Lithium chloride potentiates tumor necrosis factor-induced and interleukin 1-induced cytokine and cytokine receptor expression. Cytokine, 1991, 3, 284-291.	3.2	28
283	Tumour-necrosis-factor-mediated cytotoxicity is correlated with phospholipase-A2 activity, but not with arachidonic acid release per se. FEBS Journal, 1991, 195, 465-475.	0.2	79
284	Induction of inflammatory cell infiltration and necrosis in normal mouse skin by the combined treatment of tumor necrosis factor and lithium chloride. American Journal of Pathology, 1991, 138, 727-39.	3.8	9
285	Two discrete types of tumor necrosis factor-resistant cells derived from the same cell line. Cancer Research, 1991, 51, 2469-77.	0.9	39
286	Hormone sensitivityin vitro andin vivo of v-ras-transfected mcf-7 cell derivatives. International Journal of Cancer, 1990, 46, 522-532.	5.1	18
287	In vitro and in vivo Action of Tumor Necrosis Factor1., 1990,, 77-81.		2
288	Inhibition by glucocorticoids of tumor necrosis factorâ€mediated cytotoxicity. FEBS Letters, 1990, 262, 93-96.	2.8	31

#	Article	IF	CITATIONS
289	Cytotoxic activity of tumor necrosis factor is inhibited by amiloride derivatives without involvement of the Na+/H+antiporter. FEBS Letters, 1990, 261, 319-322.	2.8	7
290	Lithium chloride potentiates tumor necrosis factor-mediated cytotoxicity in vitro and in vivo Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9494-9498.	7.1	84
291	Tumour Necrosis Factor and Interleukin-6: Structure and Mechanism of Action of the Molecular, Cellular and in Vivo Level., 1989,, 229-240.		2
292	TNF in combination with interferon-gamma is cytotoxic to normal, untransformed mouse and rat embryo fibroblast-like cells. Anticancer Research, 1989, 9, 167-71.	1.1	18
293	Involvement of a serine protease in tumour-necrosis-factor-mediated cytotoxicity. FEBS Journal, 1988, 178, 257-265.	0.2	58
294	TNF: its potential as an antitumour agent. Developments in Biological Standardization, 1988, 69, 143-51.	0.2	5
295	Tumor Necrosis Factor: A Potential Antitumor Agent?. Journal of Interferon Research, 1987, 7, 627-634.	1.2	7
296	Reduced tumour necrosis factor-induced cytotoxicity by inhibitors of the arachidonic acid metabolism. Biochemical and Biophysical Research Communications, 1987, 149, 735-743.	2.1	129
297	Gene cloning and structure - function relationship of cytokines such as TNF and interleukins. Immunology Letters, 1987, 16, 219-226.	2.5	8
298	Abin2. The AFCS-nature Molecule Pages, 0, , .	0.2	0
299	Abin 1. The AFCS-nature Molecule Pages, 0, , .	0.2	O