Eric Kirby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5125111/publications.pdf

Version: 2024-02-01

59	6,660	32	57
papers	citations	h-index	g-index
63	63 does citations	63	4006
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Initiation and Evolution of the Shanxi Rift System in North China: Evidence From Lowâ€Temperature Thermochronology in a Plate Reconstruction Framework. Tectonics, 2021, 40, e2020TC006298.	2.8	42
2	Late Quaternary variations in paleoerosion rates in the northern Qilian Shan revealed by 10Be in fluvial terraces. Geomorphology, 2021, 386, 107751.	2.6	2
3	Evaluating Models for Lithospheric Loss and Intraplate Volcanism Beneath the Central Appalachian Mountains. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022571.	3.4	9
4	Quaternary activity and seismogenic potential of the Sierra Chica Fault System, Pampean Ranges of Argentina. Journal of South American Earth Sciences, 2021, 110, 103328.	1.4	3
5	Existence of a continental-scale river system in eastern Tibet during the late Cretaceous–early Palaeogene. Nature Communications, 2021, 12, 7231.	12.8	28
6	Chronology of the Yellow River terraces at Qingtong Gorge (NE Tibet): Insights into evolution of the Yellow River since the Middle Pleistocene. Geomorphology, 2020, 349, 106889.	2.6	12
7	Seismic Reflection Imaging of the Lowâ€Angle Panamint Normal Fault System, Eastern California. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020243.	3.4	3
8	Retention challenges for indigenous Peruvian college students on Beca 18 scholarship and strategies to improve their experiences and academic success. Diaspora, Indigenous, and Minority Education, 2020, 14, 162-176.	1.0	2
9	Ten Years After the Wenchuan Earthquake: New Insights Into the Geodynamics of the Eastern Tibet. Tectonics, 2020, 39, e2020TC006215.	2.8	5
10	Rates of Holocene normal faulting along the Dong Co fault in central Tibet, based on 14C dating of displaced fluvial terraces. Journal of Asian Earth Sciences, 2019, 183, 103962.	2.3	10
11	Resolving time-space histories of Late Cenozoic bedrock incision along the Upper Colorado River, USA. Geomorphology, 2019, 347, 106855.	2.6	10
12	Climate preconditions the Critical Zone: Elucidating the role of subsurface fractures in the evolution of asymmetric topography. Earth and Planetary Science Letters, 2019, 513, 197-205.	4.4	26
13	Late Quaternary paleoseismology of the Milin fault: Implications for active tectonics along the Yarlung Zangbo Suture, Southeastern Tibet Plateau. Tectonophysics, 2018, 731-732, 64-72.	2.2	11
14	Stratigraphic control of landscape response to base-level fall, Young Womans Creek, Pennsylvania, USA. Earth and Planetary Science Letters, 2018, 504, 163-173.	4.4	22
15	Doubt cast on how the pace of global glacial erosion responds to climate cooling. Nature, 2018, 559, 34-35.	27.8	2
16	Characterizing the transient geomorphic response to baseâ€level fall in the northeastern Tibetan Plateau. Journal of Geophysical Research F: Earth Surface, 2017, 122, 546-572.	2.8	36
17	Evaluating the size and extent of paleolakes in central Tibet during the late Pleistocene. Geophysical Research Letters, 2017, 44, 5476-5485.	4.0	18
18	Rapid and punctuated Late Holocene recession of Siling Co, central Tibet. Quaternary Science Reviews, 2017, 172, 15-31.	3.0	45

#	Article	IF	Citations
19	Slip Inversion Along Inner Foreâ€Arc Faults, Eastern Tohoku, Japan. Tectonics, 2017, 36, 2647-2668.	2.8	9
20	Oxidative dissolution under the channel leads geomorphological evolution at the Shale Hills catchment. Numerische Mathematik, 2016, 316, 981-1026.	1.4	55
21	Reply to Comment on "Crustal strength in central Tibet determined from Holocene shoreline deflection around Siling Co― Earth and Planetary Science Letters, 2016, 433, 396-398.	4.4	1
22	Rates and kinematics of active shortening along the eastern Qilian Shan, China, inferred from deformed fluvial terraces. Tectonics, 2015, 34, 2478-2493.	2.8	46
23	On the evolution of seismogenic faults in the Longmen Shan, eastern Tibet. Journal of Asian Earth Sciences, 2015, 111, 624-631.	2.3	10
24	The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran. Earth and Planetary Science Letters, 2015, 425, 204-218.	4.4	47
25	Crustal strength in central Tibet determined from Holocene shoreline deflection around Siling Co. Earth and Planetary Science Letters, 2015, 423, 145-154.	4.4	42
26	Aspect-dependent variations in regolith creep revealed by meteoric 10Be. Geology, 2014, 42, 507-510.	4.4	64
27	Holocene slip rate along the Gyaring Co Fault, central Tibet. Geophysical Research Letters, 2014, 41, 5829-5837.	4.0	24
28	Distributed deformation around the eastern tip of the Kunlun fault. International Journal of Earth Sciences, 2013, 102, 1759-1772.	1.8	39
29	The growth of northeastern Tibet and its relevance to largeâ€scale continental geodynamics: A review of recent studies. Tectonics, 2013, 32, 1358-1370.	2.8	350
30	Active forearc shortening in Tohoku, Japan: Constraints on fault geometry from erosion rates and fluvial longitudinal profiles. Geomorphology, 2013, 195, 84-98.	2.6	35
31	Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates. Earth and Planetary Science Letters, 2013, 369-370, 1-12.	4.4	143
32	Lowâ€temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during lateâ€stage orogenesis. Tectonics, 2013, 32, 1190-1211.	2.8	241
33	Relationship between outer forearc subsidence and plate boundary kinematics along the Northeast Japan convergent margin. Geochemistry, Geophysics, Geosystems, 2013, 14, 5227-5243.	2.5	22
34	Lithologic and tectonic controls on bedrock channel form at the northwest Himalayan front. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1806-1825.	2.8	85
35	Paleoseismology of the southern Panamint Valley fault: Implications for regional earthquake occurrence and seismic hazard in southern California. Journal of Geophysical Research: Solid Earth, 2013, 118, 5126-5146.	3.4	16
36	Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 2012, 44, 54-75.	2.3	761

#	Article	IF	CITATIONS
37	Tectonically twisted rivers. Nature Geoscience, 2012, 5, 688-689.	12.9	4
38	Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: insights from the Jungong basin. Basin Research, 2012, 24, 51-69.	2.7	22
39	Tectonic geomorphology along the eastern margin of Tibet: insights into the pattern and processes of active deformation adjacent to the Sichuan Basin. Geological Society Special Publication, 2011, 353, 165-188.	1.3	99
40	Late Miocene–Pliocene range growth in the interior of the northeastern Tibetan Plateau. Lithosphere, 2011, 3, 420-438.	1.4	116
41	Preliminary estimates of regolith generation and mobility in the Susquehanna Shale Hills Critical Zone Observatory, Pennsylvania, using meteoric 10Be. Applied Geochemistry, 2011, 26, S146-S148.	3.0	12
42	Along-strike topographic variation of the Longmen Shan and its significance for landscape evolution along the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 2011, 40, 855-864.	2.3	50
43	A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau. Tectonophysics, 2011, 505, 100-114.	2.2	132
44	Rapid fluvial incision along the Yellow River during headward basin integration. Nature Geoscience, 2010, 3, 209-213.	12.9	210
45	Timing and magnitude of shortening within the inner fore arc of the Japan Trench. Journal of Geophysical Research, 2010, 115, .	3.3	15
46	Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 1.24Ma terrace record near Lanzhou, China. Quaternary Science Reviews, 2009, 28, 3281-3290.	3.0	118
47	Integrated geomorphic and geodynamic modeling of a potential blind thrust in the San Francisco Bay area, California. Tectonophysics, 2009, 471, 319-328.	2.2	4
48	Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 2008, 454, 509-510.	27.8	376
49	Topography reveals seismic hazard. Nature Geoscience, 2008, 1, 485-487.	12.9	98
50	Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China. Journal of Geophysical Research, 2007, 112, .	3.3	236
51	Temporal variations in slip rate of the White Mountain Fault Zone, Eastern California. Earth and Planetary Science Letters, 2006, 248, 168-185.	4.4	54
52	Tectonics from topography: Procedures, promise, and pitfalls., 2006,,.		410
53	Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. Journal of Geophysical Research, 2004, 109, .	3.3	359
54	Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research, 2003, 108, .	3.3	395

ERIC KIRBY

#	Article	IF	CITATIONS
55	Constraints on India-Eurasia collision in the Arabian Sea region taken from the Indus Group, Ladakh Himalaya, India. Geological Society Special Publication, 2002, 195, 97-116.	1.3	53
56	Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40 Ar/39 Ar and (U-Th)/He thermochronology. Tectonics, 2002, 21, 1-1-1-20.	2.8	484
57	Quantifying differential rock-uplift rates via stream profile analysis. Geology, 2001, 29, 415.	4.4	631
58	Geomorphic limits to climate-induced increases in topographic relief. Nature, 1999, 401, 39-43.	27.8	445
59	Tectonic setting of the Sandia pluton: An orogenic 1.4 Ga granite in New Mexico. Tectonics, 1995, 14, 185-201.	2.8	60