Kumudini M Meepagala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/512457/publications.pdf

Version: 2024-02-01

28 papers

934 citations

687363 13 h-index 24 g-index

28 all docs 28 docs citations

times ranked

28

1219 citing authors

#	Article	IF	CITATIONS
1	Characterization of Toxicological and Neurophysiological Effects of Natural Product Based Chromenes to Fall Armyworm, <i>Spodoptera frugiperda</i> . Journal of Economic Entomology, 2021, 114, 2485-2492.	1.8	О
2	Furanocoumarin with Phytotoxic Activity from the Leaves of <i>Amyris elemifera</i> (Rutaceae). ACS Omega, 2021, 6, 401-407.	3.5	4
3	Sesquiterpene-α-amino acid quaternary ammonium hybrids from Stereum complicatum (Steraceae). Biochemical Systematics and Ecology, 2020, 93, 104176.	1.3	О
4	Sesquiterpenoids from culture of the fungus Stereum complicatum (Steraceae): structural diversity, antifungal and phytotoxic activities. Phytochemistry Letters, 2020, 37, 51-58.	1.2	5
5	Bioassay-Guided Isolation and Structure Elucidation of Fungicidal and Herbicidal Compounds from Ambrosia salsola (Asteraceae). Molecules, 2019, 24, 835.	3.8	7
6	Mosquitocidal Activity of a Naturally Occurring Isochroman and Synthetic Analogs from the Plant Pathogenic Fungus, Diaporthe eres Against Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2018, 55, 969-974.	1.8	7
7	Antibacterial Activity of Constituents from Mangosteen <i>Garcinia mangostana</i> Fruit Pericarp against Several Channel Catfish Pathogens. Journal of Aquatic Animal Health, 2018, 30, 179-184.	1.4	12
8	Isolation of a phytotoxic isocoumarin from <i>Diaporthe eresâ€</i> infected <scp><i>Hedera helix</i></scp> (English ivy) and synthesis of its phytotoxic analogs. Pest Management Science, 2018, 74, 37-45.	3.4	23
9	Khellin and Visnagin, Furanochromones from <i>Ammi visnaga</i> (L.) Lam., as Potential Bioherbicides. Journal of Agricultural and Food Chemistry, 2016, 64, 9475-9487.	5.2	43
10	Larvicidal and Adulticidal Activity of Chroman and Chromene Analogues against Susceptible and Permethrin-Resistant Mosquito Strains. Journal of Agricultural and Food Chemistry, 2016, 64, 4914-4920.	5.2	10
11	Phomalactone from a Phytopathogenic Fungus Infecting ZINNIA elegans (ASTERACEAE) Leaves. Journal of Chemical Ecology, 2015, 41, 602-612.	1.8	7
12	Mosquito Repellents Based on a Natural Chromene Analogue with Longer Duration of Action than N,N-Diethyl-meta-toluamide (DEET). Journal of Agricultural and Food Chemistry, 2013, 61, 9293-9297.	5.2	13
13	Phytochemicals for Pest Management: Current Advances and Future Opportunities., 2013,, 71-94.		3
14	Antibacterial compounds from Rutaceae with activities against Flavobacterium columnare and Streptococcus iniae. Journal of Agricultural Chemistry and Environment, 2013, 02, 90-100.	0.5	1
15	Naturalâ€productâ€based chromenes as a novel class of potential termiticides. Pest Management Science, 2011, 67, 1446-1450.	3.4	20
16	Natural Toxins for Use in Pest Management. Toxins, 2010, 2, 1943-1962.	3.4	144
17	New Class of Algicidal Compounds and Fungicidal Activities Derived from a Chromene Amide of Amyris texana. Journal of Agricultural and Food Chemistry, 2010, 58, 9476-9482.	5.2	34
18	Algicide Constituents from Swinglea glutinosa. Journal of Agricultural and Food Chemistry, 2009, 57, 10632-10635.	5.2	17

#	Article	IF	CITATIONS
19	NATURAL PRODUCTS FOR PEST MANAGEMENT. , 2007, , 209-251.		2
20	Plant-derived natural products exhibiting activity against formosan subterranean termites (Coptotermes formosanus). Pest Management Science, 2006, 62, 565-570.	3.4	32
21	Algicidal and antifungal compounds from the roots of Ruta graveolens and synthesis of their analogs. Phytochemistry, 2005, 66, 2689-2695.	2.9	85
22	Phytotoxic and Antifungal Compounds from Two Apiaceae Species, Lomatium californicum and Ligusticum hultenii, Rich Sources of Z-ligustilide and Apiol, Respectively. Journal of Chemical Ecology, 2005, 31, 1567-1578.	1.8	39
23	Molluscicidal activity of vulgarone B against ram's horn snail(Planorbella trivolvis). Pest Management Science, 2004, 60, 479-482.	3.4	13
24	Phytotoxins from the Leaves of Ruta graveolens. Journal of Agricultural and Food Chemistry, 2004, 52, 3345-3349.	5.2	65
25	Vulgarone B, the antifungal constituent in the steam-distilled fraction of Artemisia douglasiana. Journal of Chemical Ecology, 2003, 29, 1771-1780.	1.8	41
26	Natural Fungicides fromRuta graveolensL. Leaves, Including a New Quinolone Alkaloid. Journal of Agricultural and Food Chemistry, 2003, 51, 890-896.	5.2	156
27	Antifungal Constituents of the Essential Oil Fraction of Artemisia dracunculus L. Var. dracunculus. Journal of Agricultural and Food Chemistry, 2002, 50, 6989-6992.	5.2	139
28	Molluscicidal and antifungal activity of Erigeron speciosus steam distillate. Pest Management Science, 2002, 58, 1043-1047.	3.4	12