List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5123505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic Semiconductor Crystal Engineering for Highâ€Resolution Layerâ€Controlled 2D Crystal Arrays. Advanced Materials, 2022, 34, e2104166.	11.1	18
2	Controllable growth of centimeter-scale 2D crystalline conjugated polymers for photonic synaptic transistors. Journal of Materials Chemistry C, 2022, 10, 2681-2689.	2.7	11
3	Intrinsic Linear Dichroism of Organic Single Crystals toward Highâ€Performance Polarizationâ€Sensitive Photodetectors. Advanced Materials, 2022, 34, e2105665.	11.1	23
4	Thermally-enhanced photo-electric response of an organic semiconductor with low exciton binding energy for simultaneous and distinguishable detection of light and temperature. Science China Chemistry, 2022, 65, 145-152.	4.2	7
5	Redistributed Current Density in Lateral Organic Lightâ€Emitting Transistors Enabling Uniform Area Emission with Good Stability and Arbitrary Tunability. Advanced Materials, 2022, 34, e2108795.	11.1	26
6	MAPbI ₃ Photodetectors with 4.7 MHz Bandwidth and Their Application in Organic Optocouplers. Journal of Physical Chemistry Letters, 2022, 13, 815-821.	2.1	5
7	Polycyclic aromatic hydrocarbon-based organic semiconductors: ring-closing synthesis and optoelectronic properties. Journal of Materials Chemistry C, 2022, 10, 2411-2430.	2.7	42
8	Research on Key Materials and Devices of Organic Light-emitting Transistors [※] . Acta Chimica Sinica, 2022, 80, 327.	0.5	6
9	Polymer Electrolyte Dielectrics Enable Efficient Exciton-Polaron Quenching in Organic Semiconductors for Photostable Organic Transistors. ACS Applied Materials & Interfaces, 2022, 14, 13584-13592.	4.0	13
10	Integrating Unexpected High Chargeâ€Carrier Mobility and Lowâ€Threshold Lasing Action in an Organic Semiconductor. Angewandte Chemie, 2022, 134, .	1.6	1
11	Integrating Unexpected High Chargeâ€Carrier Mobility and Lowâ€Threshold Lasing Action in an Organic Semiconductor. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
12	Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano Research, 2022, 15, 3647-3652.	5.8	5
13	Near-Amorphous Conjugated Polymers: An Emerging Class of Semiconductors for Flexible Electronics. , 2022, 4, 1112-1123.		14
14	Nonâ€Equal Ratio Cocrystal Engineering to Improve Charge Transport Characteristics of Organic Semiconductors: A Case Study on Indolo[2,3â€a]carbazole. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
15	Nonâ€Equal Ratio Cocrystal Engineering to Improve Charge Transport Characteristics of Organic Semiconductors: A Case Study on Indolo[2,3â€a]carbazole. Angewandte Chemie, 2022, 134, .	1.6	3
16	Molecular doped, color-tunable, high-mobility, emissive, organic semiconductors for light-emitting transistors. Science Advances, 2022, 8, .	4.7	31
17	Polymorph and anisotropic Raman spectroscopy of Phz-H2ca cocrystals. Science China Materials, 2021, 64, 169-178.	3.5	4
18	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angewandte Chemie, 2021, 133, 285-293.	1.6	7

#	Article	IF	CITATIONS
19	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angewandte Chemie - International Edition, 2021, 60, 281-289.	7.2	33
20	Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition. Nano Research, 2021, 14, 304-310.	5.8	10
21	Copper Tetracyanoquinodimethane: From Micro/Nanostructures to Applications. Small, 2021, 17, e2004143.	5.2	9
22	Cocrystal Engineering: Toward Solutionâ€Processed Nearâ€Infrared 2D Organic Cocrystals for Broadband Photodetection. Angewandte Chemie - International Edition, 2021, 60, 6344-6350.	7.2	43
23	A minireview on chemical vapor deposition growth of wafer-scale monolayer <i>h</i> -BN single crystals. Nanoscale, 2021, 13, 17310-17317.	2.8	14
24	Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. Journal of Physical Chemistry Letters, 2021, 12, 1612-1630.	2.1	55
25	Tailoring the strength and number of halogen bonds toward room temperature phosphorescent microâ€cocrystals. Nano Select, 2021, 2, 1509-1516.	1.9	2
26	Cocrystal Engineering: Toward Solutionâ€Processed Nearâ€Infrared 2D Organic Cocrystals for Broadband Photodetection. Angewandte Chemie, 2021, 133, 6414-6420.	1.6	5
27	Verticalâ€organicâ€nanocrystalâ€arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat, 2021, 2, 99-108.	6.4	73
28	Oriented Conjugated Copolymer Films with Controlled Crystal Forms and Molecular Stacking Modes for Enhanced Charge Transport and Photoresponsivity. ACS Applied Polymer Materials, 2021, 3, 2098-2108.	2.0	9
29	1D Mixed‧tack Cocrystals Based on Perylene Diimide toward Ambipolar Charge Transport. Small, 2021, 17, e2006574.	5.2	19
30	Revealing molecular conformation–induced stress at embedded interfaces of organic optoelectronic devices by sum frequency generation spectroscopy. Science Advances, 2021, 7, .	4.7	29
31	Organic Lightâ€Emitting Transistors Entering a New Development Stage. Advanced Materials, 2021, 33, e2007149.	11.1	99
32	Molecular Weight Engineering in Highâ€Performance Ambipolar Emissive Mesopolymers. Angewandte Chemie - International Edition, 2021, 60, 14902-14908.	7.2	28
33	Organic permeable base light-emitting transistor: a new concept device architecture for display technology. Science China Chemistry, 2021, 64, 1261-1262.	4.2	1
34	Well-balanced ambipolar diketopyrrolopyrrole-based copolymers for OFETs, inverters and frequency doublers. Science China Chemistry, 2021, 64, 1410-1416.	4.2	19
35	Molecular Weight Engineering in Highâ€Performance Ambipolar Emissive Mesopolymers. Angewandte Chemie, 2021, 133, 15028-15034.	1.6	5
36	High Mobility Organic Lasing Semiconductor with Crystallizationâ€Enhanced Emission for Lightâ€Emitting Transistors. Angewandte Chemie, 2021, 133, 20436-20441.	1.6	5

#	Article	IF	CITATIONS
37	High Mobility Organic Lasing Semiconductor with Crystallizationâ€Enhanced Emission for Lightâ€Emitting Transistors. Angewandte Chemie - International Edition, 2021, 60, 20274-20279.	7.2	23
38	Organic Lightâ€Emitting Transistors: Organic Lightâ€Emitting Transistors Entering a New Development Stage (Adv. Mater. 31/2021). Advanced Materials, 2021, 33, 2170245.	11.1	0
39	Organic Semiconductor Single Crystals for Xâ€ray Imaging. Advanced Materials, 2021, 33, e2104749.	11.1	43
40	Application of Triplet–Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. Advanced Materials, 2021, 33, e2100704.	11.1	72
41	A novel rare-earth luminescent coordination polymer showing potential semiconductor characteristic constructed by anthracene-based dicarboxylic acid ligand (H2L). Journal of Molecular Structure, 2021, 1243, 130788.	1.8	5
42	A general route towards two-dimensional organic crystal-based functional fibriform transistors for wearable electronic textiles. Journal of Materials Chemistry C, 2021, 9, 472-480.	2.7	8
43	Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal–Organic Framework-Based Composite Films. Journal of the American Chemical Society, 2021, 143, 17526-17534.	6.6	17
44	Organic Single Crystals with High Photoluminescence Quantum Yields Close to 100% and High Mobility for Optoelectronic Devices. Advanced Materials, 2021, 33, e2105466.	11.1	29
45	Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. Journal of the American Chemical Society, 2021, 143, 19243-19256.	6.6	84
46	Recent progress on organic exciplex materials with different donor–acceptor contacting modes for luminescent applications. Journal of Materials Chemistry C, 2021, 9, 16843-16858.	2.7	30
47	Two-dimensional conjugated polymers synthesized via on-surface chemistry. Science China Materials, 2020, 63, 172-176.	3.5	9
48	Photoinduced Directional Proton Transport through Printed Asymmetric Graphene Oxide Superstructures: A New Driving Mechanism under Fullâ€Area Light Illumination. Advanced Functional Materials, 2020, 30, 1907549.	7.8	23
49	Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation. Chemical Research in Chinese Universities, 2020, 36, 110-114.	1.3	2
50	All-acceptor polymers with noncovalent interactions for efficient ambipolar transistors. Journal of Materials Chemistry C, 2020, 8, 2094-2101.	2.7	18
51	Enhanced ambipolar charge transport for efficient organic single crystal light-emitting transistors with a narrowed ambipolar regime. Journal of Materials Chemistry C, 2020, 8, 16333-16338.	2.7	9
52	Organic Fieldâ€Effect Transistors: Challenges and Emerging Opportunities in Highâ€Mobility and Lowâ€Energyâ€Consumption Organic Fieldâ€Effect Transistors (Adv. Energy Mater. 29/2020). Advanced Energy Materials, 2020, 10, 2070126.	10.2	2
53	High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors. Nanoscale, 2020, 12, 18371-18378.	2.8	23
54	Substitution site effect of naphthyl substituted anthracene derivatives and their applications in organic optoelectronics. Journal of Materials Chemistry C, 2020, 8, 15597-15602.	2.7	6

#	Article	IF	CITATIONS
55	Molecular doped organic semiconductor crystals for optoelectronic device applications. Journal of Materials Chemistry C, 2020, 8, 14996-15008.	2.7	25
56	Solution-Processed, Large-Area, Two-Dimensional Crystals of Organic Semiconductors for Field-Effect Transistors and Phototransistors. ACS Central Science, 2020, 6, 636-652.	5.3	53
57	Oneâ€Pot Domino Carbonylation Protocol for Aromatic Diimides toward nâ€Type Organic Semiconductors. Angewandte Chemie - International Edition, 2020, 59, 14024-14028.	7.2	39
58	Oneâ€Pot Domino Carbonylation Protocol for Aromatic Diimides toward nâ€Type Organic Semiconductors. Angewandte Chemie, 2020, 132, 14128-14132.	1.6	7
59	Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Research, 2020, 13, 1976-1981.	5.8	27
60	Red-emissive poly(phenylene vinylene)-derivated semiconductors with well-balanced ambipolar electrical transporting properties. Journal of Materials Chemistry C, 2020, 8, 10868-10879.	2.7	18
61	Laterally Heterogeneous 2D Layered Materials as an Artificial Lightâ€Harvesting Proton Pump. Advanced Functional Materials, 2020, 30, 2001549.	7.8	17
62	Challenges and Emerging Opportunities in Highâ€Mobility and Lowâ€Energyâ€Consumption Organic Fieldâ€Effect Transistors. Advanced Energy Materials, 2020, 10, 2000955.	10.2	63
63	Self-polarized Poly(vinylidene fluoride) Ultrathin Film and Its Piezo/Ferroelectric Properties. ACS Applied Materials & Interfaces, 2020, 12, 29818-29825.	4.0	12
64	Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. Journal of the American Chemical Society, 2020, 142, 6332-6339.	6.6	90
65	Twoâ€Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angewandte Chemie - International Edition, 2020, 59, 9403-9407.	7.2	56
66	Twoâ€Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angewandte Chemie, 2020, 132, 9489-9493.	1.6	12
67	Rational Control of Charge Transfer Excitons Toward Highâ€Contrast Reversible Mechanoresponsive Luminescent Switching. Angewandte Chemie, 2020, 132, 17733-17739.	1.6	17
68	Rational Control of Charge Transfer Excitons Toward Highâ€Contrast Reversible Mechanoresponsive Luminescent Switching. Angewandte Chemie - International Edition, 2020, 59, 17580-17586.	7.2	83
69	Organic UV‣ensitive Phototransistors Based on Distriphenylamineethynylpyrene Derivatives with Ultraâ€High Detectivity Approaching 10 ¹⁸ . Advanced Materials, 2020, 32, e1907791.	11.1	71
70	A new fluorescent quinoline derivative toward the acid-responsivity in both solution and solid states. Chinese Chemical Letters, 2020, 31, 2909-2912.	4.8	18
71	Preparing two-dimensional crystalline conjugated polymer films by synergetic polymerization and self-assembly at air/water interface. Polymer Chemistry, 2020, 11, 1572-1579.	1.9	9
72	Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule–Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. Journal of the American Chemical Society, 2020, 142, 9708-9717.	6.6	28

#	Article	lF	CITATIONS
73	All-covalently-implanted FETs with ultrahigh solvent resistibility and exceptional electrical stability, and their applications for liver cancer biomarker detection. Journal of Materials Chemistry C, 2020, 8, 7436-7446.	2.7	8
74	A Transfer Method for Highâ€Mobility, Bias‣table, and Flexible Organic Fieldâ€Effect Transistors. Advanced Materials Technologies, 2020, 5, 2000169.	3.0	14
75	Synthesis and Property Study of Field-effect Emissive Conjugated Polymers Based on Styrene and Benzothiadiazole. Acta Chimica Sinica, 2020, 78, 945.	0.5	8
76	Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Materials Today, 2019, 24, 17-25.	8.3	98
77	Highâ€Efficiency Singleâ€Component Organic Lightâ€Emitting Transistors. Advanced Materials, 2019, 31, e1903175.	11.1	98
78	Organic Single-Crystal Spintronics: Magnetoresistance Devices with High Magnetic-Field Sensitivity. ACS Nano, 2019, 13, 9491-9497.	7.3	20
79	Transmission mechanism and quantum interference in fused thienoacenes coupling to Au electrodes through the thiophene rings. Physical Chemistry Chemical Physics, 2019, 21, 16293-16301.	1.3	3
80	Crystal Engineering of Organic Optoelectronic Materials. CheM, 2019, 5, 2814-2853.	5.8	175
81	Organic Lightâ€Emitting Transistors: Highâ€Efficiency Singleâ€Component Organic Lightâ€Emitting Transistors (Adv. Mater. 37/2019). Advanced Materials, 2019, 31, 1970266.	11.1	0
82	Highly Efficient Ionic Photocurrent Generation through WS ₂ â€Based 2D Nanofluidic Channels. Small, 2019, 15, e1905355.	5.2	41
83	Quadruply Bâ†N-Fused Dibenzo-azaacene with High Electron Affinity and High Electron Mobility. Journal of the American Chemical Society, 2019, 141, 17015-17021.	6.6	93
84	Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nature Chemistry, 2019, 11, 271-277.	6.6	115
85	Organic crystalline materials in flexible electronics. Chemical Society Reviews, 2019, 48, 1492-1530.	18.7	314
86	Conjugated polymer crystals via topochemical polymerization. Science China Chemistry, 2019, 62, 1271-1274.	4.2	14
87	Reversible Modification of Nitrogen-Doped Graphene Based on Se–N Dynamic Covalent Bonds for Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 24360-24366.	4.0	13
88	Two-Pathway Viewpoint to Interpret Quantum Interference in Molecules Containing Five-Membered Heterocycles: Thienoacenes as Examples. Journal of Physical Chemistry C, 2019, 123, 15977-15984.	1.5	4
89	A case study of tuning the crystal polymorphs of organic semiconductors towards simultaneously improved light emission and field-effect properties. Journal of Materials Chemistry C, 2019, 7, 5925-5930.	2.7	22
90	Fully Printed Flexible Crossbar Memory Devices with Tipâ€Enhanced Micro/Nanostructures. Advanced Electronic Materials, 2019, 5, 1900131.	2.6	8

#	Article	IF	CITATIONS
91	Hexyl substitution of pentathienoacene toward a significant improvement in charge transport. Chinese Chemical Letters, 2019, 30, 903-905.	4.8	4
92	Vertical Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1808453.	7.8	64
93	Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nature Communications, 2019, 10, 12.	5.8	172
94	Organic single-crystal phototransistor with unique wavelength-detection characteristics. Science China Materials, 2019, 62, 729-735.	3.5	18
95	Carbon nanotubes assisting interchain charge transport in semiconducting polymer thin films towards much improved charge carrier mobility. Science China Materials, 2019, 62, 813-822.	3.5	6
96	Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Twoâ€Step CH Activation Strategy. Advanced Materials, 2019, 31, e1806010.	11.1	63
97	Anisotropic Magnetoresistance in NiFe-Based Polymer Spin Valves. ACS Applied Materials & Interfaces, 2019, 11, 11654-11659.	4.0	11
98	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte Chemie - International Edition, 2018, 57, 5708-5713.	7.2	137
99	Nâ€Type 2D Organic Single Crystals for Highâ€Performance Organic Fieldâ€Effect Transistors and Nearâ€Infrared Phototransistors. Advanced Materials, 2018, 30, e1706260.	11.1	145
100	Organic Single Crystals: N-Type 2D Organic Single Crystals for High-Performance Organic Field-Effect Transistors and Near-Infrared Phototransistors (Adv. Mater. 16/2018). Advanced Materials, 2018, 30, 1870114.	11.1	5
101	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte Chemie, 2018, 130, 5810-5815.	1.6	38
102	Cocrystals Strategy towards Materials for Nearâ€Infrared Photothermal Conversion and Imaging. Angewandte Chemie, 2018, 130, 4027-4031.	1.6	50
103	Controllable growth of C ₈ -BTBT single crystalline microribbon arrays by a limited solvent vapor-assisted crystallization (LSVC) method. Journal of Materials Chemistry C, 2018, 6, 2419-2423.	2.7	37
104	Quinolineâ€Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm ² V ^{â~1} s ^{â~1} in Flexible Thin Film Devices. Advanced Materials, 2018, 30, 1704843.	11.1	97
105	Cocrystals Strategy towards Materials for Nearâ€Infrared Photothermal Conversion and Imaging. Angewandte Chemie - International Edition, 2018, 57, 3963-3967.	7.2	255
106	Organic Optoelectronics: 2D Organic Materials for Optoelectronic Applications (Adv. Mater. 2/2018). Advanced Materials, 2018, 30, 1870012.	11.1	11
107	Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant. Journal of Materials Chemistry C, 2018, 6, 6378-6384.	2.7	105
108	High performance organic transistors and phototransistors based on diketopyrrolopyrrole-quaterthiophene copolymer thin films fabricated via low-concentration solution processing. Chinese Chemical Letters, 2018, 29, 1675-1680.	4.8	25

#	Article	IF	CITATIONS
109	A new organic compound of 2-(2,2-diphenylethenyl)anthracene (DPEA) showing simultaneous electrical charge transport property and AlE optical characteristics. Journal of Materials Chemistry C, 2018, 6, 3856-3860.	2.7	27
110	Solvatomechanical Bending of Organic Charge Transfer Cocrystal. Journal of the American Chemical Society, 2018, 140, 6186-6189.	6.6	100
111	Ultrathin silica film derived with ultraviolet irradiation of perhydropolysilazane for high performance and low voltage organic transistor and inverter. Science China Materials, 2018, 61, 1237-1242.	3.5	9
112	2D Organic Materials for Optoelectronic Applications. Advanced Materials, 2018, 30, 1702415.	11.1	266
113	Organic semiconductor crystals. Chemical Society Reviews, 2018, 47, 422-500.	18.7	623
114	Reliable Spin Valves of Conjugated Polymer Based on Mechanically Transferrable Top Electrodes. ACS Nano, 2018, 12, 12657-12664.	7.3	34
115	Organic field-effect optical waveguides. Nature Communications, 2018, 9, 4790.	5.8	85
116	Electrochemical polymerization for two-dimensional conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 10672-10686.	2.7	39
117	Organicâ€Singleâ€Crystal Vertical Fieldâ€Effect Transistors and Phototransistors. Advanced Materials, 2018, 30, e1803655.	11.1	59
118	Fullerene-derivative as interlayer for high performance organic thin-film transistors. Journal of Materials Chemistry C, 2018, 6, 6052-6057.	2.7	7
119	Freeâ€Standing 2D Hexagonal Aluminum Nitride Dielectric Crystals for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1801891.	11.1	32
120	Halogenated Tetraazapentacenes with Electron Mobility as High as 27.8 cm ² V ^{â^'1} s ^{â^'1} in Solutionâ€Processed nâ€Channel Organic Thinâ€Film Transistors. Advanced Materials, 2018, 30, e1803467.	11.1	156
121	Organic Semiconductor Single Crystals for Electronics and Photonics. Advanced Materials, 2018, 30, e1801048.	11.1	319
122	Integrating Efficient Optical Gain in Highâ€Mobility Organic Semiconductors for Multifunctional Optoelectronic Applications. Advanced Functional Materials, 2018, 28, 1802454.	7.8	50
123	Organic Fieldâ€Effect Transistor for Energyâ€Related Applications: Lowâ€Powerâ€Consumption Devices, Nearâ€Infrared Phototransistors, and Organic Thermoelectric Devices. Advanced Energy Materials, 2018, 8, 1801003.	10.2	95
124	Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics. Nature Communications, 2018, 9, 2339.	5.8	76
125	Two-Dimensional High-Quality Monolayered Triangular WS ₂ Flakes for Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 22435-22444.	4.0	77
126	An Asymmetric Furan/Thieno[3,2â€ <i>b</i>]Thiophene Diketopyrrolopyrrole Building Block for Annealingâ€Free Greenâ€Solvent Processable Organic Thinâ€Film Transistors. Macromolecular Rapid Communications, 2018, 39, e1800225.	2.0	28

#	Article	IF	CITATIONS
127	A novel angularly fused bistetracene: facile synthesis, crystal packing and single-crystal field effect transistors. Journal of Materials Chemistry C, 2017, 5, 1308-1312.	2.7	27
128	Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for High Crystallinity toward Efficient Charge Transport. Journal of the American Chemical Society, 2017, 139, 2734-2740.	6.6	79
129	Enhancing field-effect mobility and maintaining solid-state emission by incorporating 2,6-diphenyl substitution to 9,10-bis(phenylethynyl)anthracene. Journal of Materials Chemistry C, 2017, 5, 2519-2523.	2.7	24
130	Fieldâ€Effect Devices: Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their Substitutional Symmetry (Adv. Mater. 10/2017). Advanced Materials, 2017, 29, .	11.1	1
131	Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie - International Edition, 2017, 56, 7831-7835.	7.2	146
132	Inverse Magnetoresistance in Polymer Spin Valves. ACS Applied Materials & Interfaces, 2017, 9, 15644-15651.	4.0	35
133	Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie, 2017, 129, 7939-7943.	1.6	32
134	Comparable charge transport property based on S···S interactions with that of ï€-ï€ stacking in a bis-fused tetrathiafulvalene compound. Science China Chemistry, 2017, 60, 510-515.	4.2	9
135	Construction of Two-Dimensional Chiral Networks through Atomic Bromine on Surfaces. Journal of Physical Chemistry Letters, 2017, 8, 326-331.	2.1	33
136	Tuning crystal polymorphs of a ï€-extended tetrathiafulvalene-based cruciform molecule towards high-performance organic field-effect transistors. Science China Materials, 2017, 60, 75-82.	3.5	14
137	Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their Substitutional Symmetry. Advanced Materials, 2017, 29, 1605053.	11.1	64
138	Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. Journal of Materials Chemistry C, 2017, 5, 566-572.	2.7	51
139	Short-Wave Near-Infrared Linear Dichroism of Two-Dimensional Germanium Selenide. Journal of the American Chemical Society, 2017, 139, 14976-14982.	6.6	286
140	Random Access Memory: Organic Ferroelectricâ€Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Halfâ€Selection Problem (Adv. Mater. 34/2017). Advanced Materials, 2017, 29, .	11.1	5
141	Organic Ferroelectricâ€Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Halfâ€6election Problem. Advanced Materials, 2017, 29, 1701907.	11.1	46
142	Enhanced stability of a rubrene analogue with a brickwork packing motif. Journal of Materials Chemistry C, 2017, 5, 8376-8379.	2.7	4
143	Approaching Intra―and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals. Advanced Materials, 2017, 29, 1701251.	11.1	107
144	Versatile asymmetric thiophene/benzothiophene flanked diketopyrrolopyrrole polymers with ambipolar properties for OFETs and OSCs. Polymer Chemistry, 2017, 8, 5603-5610.	1.9	33

103

#	Article	IF	CITATIONS
145	Aromatic Extension at 2,6-Positions of Anthracene toward an Elegant Strategy for Organic Semiconductors with Efficient Charge Transport and Strong Solid State Emission. Journal of the American Chemical Society, 2017, 139, 17261-17264.	6.6	158
146	Halogen bonded cocrystal polymorphs of 1,4-di(4′-pyridyl)-1,3-diacetylene. CrystEngComm, 2017, 19, 4505-4509.	1.3	15
147	Solution-Processed Flexible Organic Ferroelectric Phototransistor. ACS Applied Materials & Interfaces, 2017, 9, 43880-43885.	4.0	25
148	Novel Air Stable Organic Radical Semiconductor of Dimers of Dithienothiophene, Single Crystals, and Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 7466-7471.	11.1	39
149	A General Method for Growing Twoâ€Dimensional Crystals of Organic Semiconductors by "Solution Epitaxy― Angewandte Chemie, 2016, 128, 9671-9675.	1.6	28
150	Deepening Insights of Charge Transfer and Photophysics in a Novel Donor–Acceptor Cocrystal for Waveguide Couplers and Photonic Logic Computation. Advanced Materials, 2016, 28, 5954-5962.	11.1	105
151	Organic Memory Devices: 2D Mica Crystal as Electret in Organic Fieldâ€Effect Transistors for Multistate Memory (Adv. Mater. 19/2016). Advanced Materials, 2016, 28, 3792-3792.	11.1	2
152	Perovskite Photodetectors based on CH ₃ NH ₃ PbI ₃ Single Crystals. Chemistry - an Asian Journal, 2016, 11, 2675-2679.	1.7	30
153	Unveiling the Switching Riddle of Silver Tetracyanoquinodimethane Towards Novel Planar Singleâ€Crystalline Electrochemical Metallization Memories. Advanced Materials, 2016, 28, 7094-7100.	11.1	17
154	A General Method for Growing Twoâ€Dimensional Crystals of Organic Semiconductors by "Solution Epitaxy― Angewandte Chemie - International Edition, 2016, 55, 9519-9523.	7.2	153
155	Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer. Advanced Materials, 2016, 28, 7521-7526.	11.1	102
156	Titelbild: A General Method for Growing Twoâ€Đimensional Crystals of Organic Semiconductors by "Solution Epitaxy―(Angew. Chem. 33/2016). Angewandte Chemie, 2016, 128, 9593-9593.	1.6	0
157	Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices. Advanced Materials, 2016, 28, 4513-4523.	11.1	185
158	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. Angewandte Chemie, 2016, 128, 5292-5295.	1.6	7
159	Recent advances in one-dimensional organic p–n heterojunctions for optoelectronic device applications. Journal of Materials Chemistry C, 2016, 4, 9388-9398.	2.7	41
160	2D Materials: Largeâ€Size 2D βâ€Cu ₂ S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Superâ€Cooling Chemicalâ€Vaporâ€Deposition (Adv.) Tj ETG	2q 0.0 0 rg	BB/Overlock
161	Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic Materials by Cocrystallization. Angewandte Chemie, 2016, 128, 14229-14233.	1.6	29

¹⁶² Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic
Materials by Cocrystallization. Angewandte Chemie - International Edition, 2016, 55, 14023-14027.

#	Article	IF	CITATIONS
163	Organic cocrystals: the development of ferroelectric properties. Science China Materials, 2016, 59, 523-530.	3.5	35
164	Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Topics in Current Chemistry, 2016, 374, 83.	3.0	52
165	Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory. Advanced Materials, 2016, 28, 8227-8233.	11.1	20
166	Large‣ize 2D β u ₂ S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Superâ€Cooling Chemicalâ€Vaporâ€Deposition. Advanced Materials, 2016, 28, 8271-8276.	11.1	57
167	Co-crystal engineering: a novel method to obtain one-dimensional (1D) carbon nanocrystals of corannulene–fullerene by a solution process. Nanoscale, 2016, 8, 14920-14924.	2.8	55
168	Highâ€Performance Allâ€Polymer Photoresponse Devices Based on Acceptor–Acceptor Conjugated Polymers. Advanced Functional Materials, 2016, 26, 6306-6315.	7.8	88
169	Multilevel Investigation of Charge Transport in Conjugated Polymers. Accounts of Chemical Research, 2016, 49, 2435-2443.	7.6	81
170	Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering. Science Advances, 2016, 2, e1501491.	4.7	122
171	Tuning the aggregation structure and electrical property of 2.6-diphenyl-anthracene by the density of octadecyltrichlorosilane. Science China Chemistry, 2016, 59, 1645-1650.	4.2	5
172	Gibbs–Curie–Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth. Advanced Materials, 2016, 28, 1697-1702.	11.1	88
173	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. Angewandte Chemie - International Edition, 2016, 55, 5206-5209.	7.2	51
174	Surface-induced highly oriented perylo[1,12-b,c,d]selenophene thin films for high performance organic field-effect transistors. Organic Electronics, 2016, 35, 186-192.	1.4	10
175	Tuning charge transport from unipolar (n-type) to ambipolar in bis(naphthalene diimide) derivatives by introducing l€-conjugated heterocyclic bridging moieties. Journal of Materials Chemistry C, 2016, 4, 7230-7240.	2.7	25
176	2D Mica Crystal as Electret in Organic Fieldâ€Effect Transistors for Multistate Memory. Advanced Materials, 2016, 28, 3755-3760.	11.1	62
177	Organic Cocrystal Photovoltaic Behavior: A Model System to Study Charge Recombination of C ₆₀ and C ₇₀ at the Molecular Level. Advanced Electronic Materials, 2016, 2, 1500423.	2.6	42
178	Highâ€Mobility Nâ€Type Organic Fieldâ€Effect Transistors of Rylene Compounds Fabricated by a Traceâ€Spinâ€Coating Technique. Advanced Electronic Materials, 2016, 2, 1500430.	2.6	14
179	Soft-Etching Copper and Silver Electrodes for Significant Device Performance Improvement toward Facile, Cost-Effective, Bottom-Contacted, Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2016, 8, 7919-7927.	4.0	9
180	Epitaxially-crystallized oriented naphthalene bis(dicarboximide) morphology for significant performance improvement of electron-transporting thin-film transistors. Chemical Communications, 2016, 52, 4902-4905.	2.2	21

#	Article	IF	CITATIONS
181	Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance. Nano Research, 2016, 9, 458-472.	5.8	31
182	Topochemical polymerization for preparing polymer crystals. Scientia Sinica Chimica, 2016, 46, 1007-1022.	0.2	3
183	Topochemical polymerization of diacetylenes. Chinese Science Bulletin, 2016, 61, 2688-2706.	0.4	8
184	Molecular Electronics: Nanogap Electrodes towards Solid State Singleâ€Molecule Transistors (Small) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf
185	Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing Self-Solution-Shearing Method. Scientific Reports, 2015, 5, 13195.	1.6	36
186	Porphyrin Supramolecular 1D Structures via Surfactantâ€Assisted Selfâ€Assembly. Advanced Materials, 2015, 27, 5379-5387.	11.1	106
187	Nanogap Electrodes towards Solid State Singleâ€Molecule Transistors. Small, 2015, 11, 6115-6141.	5.2	47
188	Highâ€Performance UVâ€Sensitive Organic Phototransistors Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b′</i>]dithiophene Dimers Linked with Unsaturated Bonds. Advanced Electronic Materials, 2015, 1, 1500071.	2.6	31
189	Single-displacement controlled spontaneous electrolysis towards CuTCNQ microribbon electrodes in organic single-crystal transistors. Physical Chemistry Chemical Physics, 2015, 17, 26541-26544.	1.3	4
190	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	1.9	34
191	Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). Chemical Communications, 2015, 51, 11777-11779.	2.2	107
192	An asymmetric naphthalimide derivative for n-channel organic field-effect transistors. Physical Chemistry Chemical Physics, 2015, 17, 26519-26524.	1.3	13
193	Thermal induced single grain boundary break junction for suspended nanogap electrodes. Science China Materials, 2015, 58, 769-774.	3.5	4
194	Challenges of organic "cocrystals― Science China Materials, 2015, 58, 854-859.	3.5	39
195	Modulating the metal/organic interface via CuTCNQ decorated layer toward high performance bottom-contact single-crystal transistors. Science China Chemistry, 2015, 58, 1027-1031.	4.2	2
196	High-Efficiency Large-Bandgap Material for Polymer Solar Cells. Macromolecular Rapid Communications, 2015, 36, 84-89.	2.0	19
197	Air-stable ambipolar organic field-effect transistors based on naphthalenediimide–diketopyrrolopyrrole copolymers. RSC Advances, 2015, 5, 19520-19527.	1.7	15
198	Solutionâ€Processed Largeâ€Area Nanocrystal Arrays of Metal–Organic Frameworks as Wearable, Ultrasensitive, Electronic Skin for Health Monitoring. Small, 2015, 11, 3351-3356.	5.2	75

#	Article	IF	CITATIONS
199	Rational Design of Charge-Transfer Interactions in Halogen-Bonded Co-crystals toward Versatile Solid-State Optoelectronics. Journal of the American Chemical Society, 2015, 137, 11038-11046.	6.6	246
200	A cross-dipole stacking molecule of an anthracene derivative: integrating optical and electrical properties. Journal of Materials Chemistry C, 2015, 3, 3068-3071.	2.7	35
201	The position effect of an ethynyl spacer on the carrier mobility of anthracene derivatives. Journal of Materials Chemistry C, 2015, 3, 5368-5371.	2.7	14
202	Single Grain Boundary Break Junction for Suspended Nanogap Electrodes with Gapwidth Down to 1–2 nm by Focused Ion Beam Milling. Advanced Materials, 2015, 27, 3002-3006.	11.1	59
203	Revealing the Chargeâ€Transfer Interactions in Selfâ€Assembled Organic Cocrystals: Twoâ€Dimensional Photonic Applications. Angewandte Chemie - International Edition, 2015, 54, 6785-6789.	7.2	198
204	Nanogap Electrodes: Single Grain Boundary Break Junction for Suspended Nanogap Electrodes with Gapwidth Down to 1–2 nm by Focused Ion Beam Milling (Adv. Mater. 19/2015). Advanced Materials, 2015, 27, 3095-3095.	11.1	4
205	Side Chain Influence on the Morphology and Photovoltaic Performance of 5-Fluoro-6-alkyloxybenzothiadiazole and Benzodithiophene Based Conjugated Polymers. ACS Applied Materials & Interfaces, 2015, 7, 10710-10717.	4.0	38
206	Green light-emitting diode from bromine based organic-inorganic halide perovskite. Science China Materials, 2015, 58, 186-191.	3.5	58
207	Recent advances in polymer phototransistors. Polymer Chemistry, 2015, 6, 7933-7944.	1.9	76
208	Naphthyl substituted anthracene combining charge transport with light emission. Journal of Materials Chemistry C, 2015, 3, 10695-10698.	2.7	28
209	Synthesis and application of benzooxadiazole-based conjugated polymers in high performance phototransistors. Journal of Materials Chemistry C, 2015, 3, 12083-12089.	2.7	5
210	Touching polymer chains by organic field-effect transistors. Scientific Reports, 2015, 4, 6387.	1.6	5
211	Polyimide (PI) high-quality polymer dielectric films with the features of anti-solvents and large-area consistency for field-effect transistors. RSC Advances, 2015, 5, 88059-88062.	1.7	6
212	Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions. Nature Communications, 2015, 6, 7478.	5.8	43
213	High charge mobility polymers based on a new di(thiophen-2-yl)thieno[3,2-b]thiophene for transistors and solar cells. Polymer Chemistry, 2015, 6, 7684-7692.	1.9	7
214	High mobility emissive organic semiconductor. Nature Communications, 2015, 6, 10032.	5.8	420
215	Tuning the Crystal Polymorphs of Alkyl Thienoacene via Solution Selfâ€Assembly Toward Airâ€&table and Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 825-830. 	11.1	106
216	Ambipolar copolymer of dithienocoronenedi-imide and benzo(bis)thiadiazole with balanced hole and electron mobility. Organic Electronics, 2015, 16, 101-108.	1.4	10

#	Article	IF	CITATIONS
217	High-mobility polymeric semiconductors. Chinese Science Bulletin, 2015, 60, 2169-2187.	0.4	9
218	Copolymers of benzo[1,2-b:4,5-b′]dithiophene and bithiazole for high-performance thin film phototransistors. Journal of Materials Chemistry C, 2014, 2, 9505-9511.	2.7	25
219	Microelectrode Electrochemistry with Semiconducting Microelectrode Chips. Small, 2014, 10, 878-883.	5.2	2
220	"Regioselective Deposition―Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards Allâ€Solutionâ€Processed, Highâ€Performance, Bottomâ€Contacted, Flexible, Polymerâ€Based Electronics. Advanced Functional Materials, 2014, 24, 3783-3789.	7.8	29
221	Rubrene analogues with the aggregation-induced emission enhancement behaviour. Journal of Materials Chemistry C, 2014, 2, 884-890.	2.7	22
222	Planar Conjugated Polymers Containing 9,10â€Disubstituted Phenanthrene Units for Efficient Polymer Solar Cells. Macromolecular Rapid Communications, 2014, 35, 1142-1147.	2.0	14
223	A novel method for photolithographic polymer shadow masking: toward high-resolution high-performance top-contact organic field effect transistors. Chemical Communications, 2014, 50, 8328-8330.	2.2	22
224	Controlled self-assembly and photovoltaic characteristics of porphyrin derivatives on a silicon surface at solid–liquid interfaces. Soft Matter, 2014, 10, 2612.	1.2	32
225	High performance n-type and ambipolar small organic semiconductors for organic thin film transistors. Physical Chemistry Chemical Physics, 2014, 16, 22448-22457.	1.3	178
226	5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.	2.7	27
227	Two-dimensional Cr ₂ O ₃ and interconnected graphene–Cr ₂ O ₃ nanosheets: synthesis and their application in lithium storage. Journal of Materials Chemistry A, 2014, 2, 944-948.	5.2	48
228	A thienyl peripherally substituted rubrene analogue with constant emissions and good film forming ability. Journal of Materials Chemistry C, 2014, 2, 8222-8225.	2.7	10
229	Synthesis and aggregation-induced emissions of thienyl substituted cyclobutene derivatives. Journal of Materials Chemistry C, 2014, 2, 5083-5086.	2.7	11
230	Silver mirror reaction for organic electronics: towards high-performance organic field-effect transistors and circuits. Journal of Materials Chemistry C, 2014, 2, 4142.	2.7	29
231	5-Alkyloxy-6-fluorobenzo[<i>c</i>][1,2,5]thiadiazole- and Silafluorene-Based D–A Alternating Conjugated Polymers: Synthesis and Application in Polymer Photovoltaic Cells. Macromolecules, 2014, 47, 4645-4652.	2.2	47
232	Organic Electronics: "Regioselective Deposition―Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards All-Solution-Processed, High-Performance,		

#	Article	IF	CITATIONS
235	25th Anniversary Article: Key Points for Highâ€Mobility Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 6158-6183.	11.1	710
236	Tuning electrical properties of graphite oxide by plasma. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120308.	1.6	10
237	Photoswitches: High Performance Photoswitches Based on Flexible and Amorphous D–A Polymer Nanowires (Small 2/2013). Small, 2013, 9, 166-166.	5.2	2
238	Ordering of conjugated polymer molecules: recent advances and perspectives. Polymer Chemistry, 2013, 4, 5197.	1.9	101
239	Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 2773.	1.9	31
240	Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane. Chemical Communications, 2013, 49, 1199.	2.2	59
241	"Double Exposure Method†a Novel Photolithographic Process to Fabricate Flexible Organic Field-Effect Transistors and Circuits. ACS Applied Materials & Interfaces, 2013, 5, 2316-2319.	4.0	24
242	Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction. Journal of the American Chemical Society, 2013, 135, 9050-9054.	6.6	63
243	High Performance Nanocrystals of a Donor–Acceptor Conjugated Polymer. Chemistry of Materials, 2013, 25, 2649-2655.	3.2	64
244	Topological Structural Transformations of Nanoparticle Self-Assemblies Mediated by Phase Transfer and Their Application as Organic–Inorganic Hybrid Photodetectors. ACS Applied Materials & Interfaces, 2013, 5, 12254-12261.	4.0	3
245	High Performance Photoswitches Based on Flexible and Amorphous D–A Polymer Nanowires. Small, 2013, 9, 294-299.	5.2	25
246	Single crystal field-effect transistors containing a pentacene analogue and their application in ethanol vapor detection. Applied Physics Letters, 2012, 101, 103302.	1.5	26
247	Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chemical Communications, 2012, 48, 2773.	2.2	223
248	Substitution effect on molecular packing and transistor performance of indolo[3,2-b]carbazole derivatives. Journal of Materials Chemistry, 2012, 22, 4409-4417.	6.7	54
249	High performance n-type single crystalline transistors of naphthalene bis(dicarboximide) and their anisotropic transport in crystals. Chemical Communications, 2012, 48, 5154.	2.2	38
250	Synthesis of a Conjugated Polymer with Broad Absorption and Its Application in High-Performance Phototransistors. Macromolecules, 2012, 45, 1296-1302.	2.2	86
251	Interface engineering for high-performance organic field-effect transistors. Physical Chemistry Chemical Physics, 2012, 14, 14165.	1.3	85
252	Photovoltaic effect of individual polymer nanotube. Applied Physics Letters, 2012, 100, 173902.	1.5	6

#	Article	IF	CITATIONS
253	Solvent-vapor induced self-assembly of a conjugated polymer: A correlation between solvent nature and transistor performance. Organic Electronics, 2012, 13, 2372-2378.	1.4	23
254	Synthesizing MnO ₂ nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chemical Science, 2012, 3, 433-437.	3.7	194
255	Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews, 2012, 112, 2208-2267.	23.0	3,164
256	Organic photoresponse materials and devices. Chemical Society Reviews, 2012, 41, 1754-1808.	18.7	570
257	High Mobility, Air Stable, Organic Single Crystal Transistors of an nâ€Type Diperylene Bisimide. Advanced Materials, 2012, 24, 2626-2630.	11.1	199
258	Molecular Crystal Lithography: A Facile and Low ost Approach to Fabricate Nanogap Electrodes. Advanced Materials, 2012, 24, 694-698.	11.1	22
259	Morphology control for high performance organic thin film transistors. Chemical Science, 2011, 2, 590-600.	3.7	108
260	Physicochemical, self-assembly and field-effect transistor properties of anti- and syn- thienoacene isomers. Journal of Materials Chemistry, 2011, 21, 11335.	6.7	18
261	Controlled growth and assembly of one-dimensional ordered nanostructures of organic functional materials. Soft Matter, 2011, 7, 1615-1630.	1.2	50
262	Recent progress of high performance organic thin film field-effect transistors. Journal of Materials Chemistry, 2011, 21, 11708.	6.7	67
263	Fine-Tuned Nanostructures Assembled from <scp>l</scp> -Lysine-Functionalized Perylene Bisimides. Langmuir, 2011, 27, 11364-11371.	1.6	80
264	A new pseudo rubrene analogue with excellent film forming ability. Science China Chemistry, 2011, 54, 631-635.	4.2	4
265	Organic Nanowire Crystals Combine Excellent Device Performance and Mechanical Flexibility. Small, 2011, 7, 189-193.	5.2	51
266	Largeâ€Area Singleâ€Crystalline Nanocone Arrays of an Organic Chargeâ€Transfer Complex: Controlling Growth, Characterization, and Applications. Small, 2011, 7, 1412-1415.	5.2	26
267	Organic Nanowires: Organic Nanowire Crystals Combine Excellent Device Performance and Mechanical Flexibility (Small 2/2011). Small, 2011, 7, 162-162.	5.2	1
268	High Performance Phototransistors of a Planar Conjugated Copolymer. Macromolecular Rapid Communications, 2011, 32, 649-653.	2.0	26
269	Millimeter‧ized Molecular Monolayer Twoâ€Dimensional Crystals. Advanced Materials, 2011, 23, 2059-2063.	11.1	198
270	Sulfonated Graphene for Persistent Aromatic Pollutant Management. Advanced Materials, 2011, 23, 3959-3963.	11.1	648

#	Article	IF	CITATIONS
271	Mica, a Potential Twoâ€Dimensionalâ€Crystal Gate Insulator for Organic Fieldâ€Effect Transistors. Advanced Materials, 2011, 23, 5502-5507.	11.1	92
272	Organic single crystal field-effect transistors: advances and perspectives. Journal of Materials Chemistry, 2010, 20, 4994.	6.7	154
273	Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications. Science China Chemistry, 2010, 53, 1225-1234.	4.2	6
274	Highâ€Performance Organic Nanoscale Photoswitches Based on Nanogap Electrodes Coated with a Blend of Poly(3â€hexylthiophene) and [6,6]â€Phenyl 61â€butyric Acid Methyl Ester (P3HT:PCBM). Advanced Materials, 2010, 22, 1645-1648.	11.1	48
275	Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography. Applied Physics Letters, 2010, 97, .	1.5	67
276	High performance organic semiconductors for field-effect transistors. Chemical Communications, 2010, 46, 5211.	2.2	313
277	Dibenzothiophene Derivatives: From Herringbone to Lamellar Packing Motif. Crystal Growth and Design, 2010, 10, 4155-4160.	1.4	84
278	Femtoliter and Attoliter Electrochemical Cells on Chips. Analytical Chemistry, 2010, 82, 1521-1526.	3.2	20
279	Tuning intermolecular non-covalent interactions for nanowires of organic semiconductors. Nanoscale, 2010, 2, 2652.	2.8	24
280	Single crystal ribbons and transistors of a solution processed sickle-like fused-ring thienoacene. Journal of Materials Chemistry, 2010, 20, 6014.	6.7	36
281	Mobility dependence on the conducting channel dimension of organic field-effect transistors based on single-crystalline nanoribbons. Journal of Materials Chemistry, 2010, 20, 7029.	6.7	42
282	Organic Single-Crystalline pâ^'n Junction Nanoribbons. Journal of the American Chemical Society, 2010, 132, 11580-11584.	6.6	208
283	Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor. Journal of Materials Chemistry, 2010, 20, 1203-1207.	6.7	26
284	Influence of Intermolecular NHâ‹â‹Ï€ Interactions on Molecular Packing and Fieldâ€Effect Performance o Organic Semiconductors. ChemPhysChem, 2009, 10, 2345-2348.	of 1.0	26
285	Water-controlled synthesis of low-dimensional molecular crystals and the fabrication of a new water and moisture indicator. Nano Research, 2009, 2, 857.	5.8	18
286	Nanowire Crystals of a Rigid Rod Conjugated Polymer. Journal of the American Chemical Society, 2009, 131, 17315-17320.	6.6	141
287	Molecular Orientation and Field-effect Transistors of a Rigid Rod Conjugated Polymer Thin Films. Journal of Physical Chemistry B, 2009, 113, 4176-4180.	1.2	34
288	Ordering Rigid Rod Conjugated Polymer Molecules for High Performance Photoswitchers. Langmuir, 2008, 24, 13241-13244.	1.6	50

#	Article	IF	CITATIONS
289	Phototransistors of a Rigid Rod Conjugated Polymer. Journal of Physical Chemistry C, 2008, 112, 19690-19693.	1.5	101