
## M Deane Bowers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5123211/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF                    | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|
| 1  | Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 2015, 179, 1-14.                                                                                                          | 2.0                   | 232                |
| 2  | The Effects of Enriched Carbon Dioxide Atmospheres on Plant-Insect Herbivore Interactions. Science, 1989, 243, 1198-1200.                                                                                        | 12.6                  | 231                |
| 3  | The Effect of Nutrients and Enriched CO2Environments on Production of Carbon-Based<br>Allelochemicals in Plantago: A Test of the Carbon/Nutrient Balance Hypothesis. American Naturalist,<br>1992, 140, 707-723. | 2.1                   | 200                |
| 4  | Effects of Plant Age, Genotype and Herbivory on Plantago Performance and Chemistry. Ecology, 1993,<br>74, 1778-1791.                                                                                             | 3.2                   | 187                |
| 5  | Response of generalist and specialist insects to qualitative allelochemical variation. Journal of<br>Chemical Ecology, 1988, 14, 319-334.                                                                        | 1.8                   | 181                |
| 6  | Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecology Letters, 2009, 12, 612-621.                                                                                          | 6.4                   | 156                |
| 7  | Pattern of Leaf Damage Affects Fitness of the Annual Plant Raphanus Sativus (Brassicaceae). Ecology,<br>1993, 74, 2066-2071.                                                                                     | 3.2                   | 139                |
| 8  | Iridoid glycosides and host-plant specificity in larvae of the buckeye butterfly,Junonia coenia<br>(Nymphalidae). Journal of Chemical Ecology, 1984, 10, 1567-1577.                                              | 1.8                   | 126                |
| 9  | Variation in Food Quality and Temperature Constrain Foraging of Gregarious Caterpillars. Ecology, 1990, 71, 1031-1039.                                                                                           | 3.2                   | 123                |
| 10 | Chemical variation within and between individuals ofPlantago lanceolata (Plantaginaceae). Journal of<br>Chemical Ecology, 1992, 18, 985-995.                                                                     | 1.8                   | 123                |
| 11 | Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia, 2009, 160, 771-779.                                                      | 2.0                   | 115                |
| 12 | Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the<br>specialist herbivore Junonia coenia (Nymphalidae). Oecologia, 1995, 101, 75-85.                        | 2.0                   | 113                |
| 13 | Fate of iridoid glycosides in different life stages of the Buckeye,Junonia coenia (Lepidoptera:) Tj ETQq1 1 0.7843                                                                                               | 14 <sub>19</sub> BT/0 | Dverlock 10<br>112 |
| 14 | Fate of ingested iridoid glycosides in lepidopteran herbivores. Journal of Chemical Ecology, 1986, 12,<br>169-178.                                                                                               | 1.8                   | 108                |
| 15 | Direct and indirect effects of predatory wasps (Polistes sp.: Vespidae) on gregarious caterpillars<br>(Hemileuca lucina: Saturniidae). Oecologia, 1988, 75, 619-624.                                             | 2.0                   | 108                |
| 16 | The importance of sequestered iridoid glycosides as a defense against an ant predator. Journal of<br>Chemical Ecology, 1996, 22, 1527-1539.                                                                      | 1.8                   | 106                |
| 17 | Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record. PLoS ONE, 2012, 7, e44370.                                                                      | 2.5                   | 105                |
| 18 | Early Stage of Host Range Expansion by a Specialist Herbivore, Euphydryas Phaeton (Nymphalidae).<br>Ecology, 1992, 73, 526-536.                                                                                  | 3.2                   | 103                |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Iridoid Glycosides. , 1991, , 297-325.                                                                                                                                                                     |     | 101       |
| 20 | The role of iridoid glycosides in host-plant specificity of checkerspot butterflies. Journal of Chemical Ecology, 1983, 9, 475-493.                                                                        | 1.8 | 93        |
| 21 | Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm. Journal of Chemical Ecology, 1988, 14, 335-351.                  | 1.8 | 90        |
| 22 | lridoid glycosides as oviposition stimulants for the buckeye butterfly,Junonia coenia (Nymphalidae).<br>Journal of Chemical Ecology, 1988, 14, 917-928.                                                    | 1.8 | 87        |
| 23 | Effects of genotype, habitat, and seasonal variation on iridoid glycoside content of Plantago<br>lanceolata (Plantaginaceae) and the implications for insect herbivores. Oecologia, 1992, 91, 201-207.     | 2.0 | 86        |
| 24 | Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia, 2005, 143, 578-587.                                                 | 2.0 | 84        |
| 25 | UNPALATABILITY AS A DEFENSE STRATEGY OF <i>EUPHYDRYAS PHAETON</i> (LEPIDOPTERA: NYMPHALIDAE).<br>Evolution; International Journal of Organic Evolution, 1980, 34, 586-600.                                 | 2.3 | 78        |
| 26 | Title is missing!. Journal of Chemical Ecology, 1999, 25, 283-295.                                                                                                                                         | 1.8 | 77        |
| 27 | Phenology of nutritional differences between new and mature leaves and its effect on caterpillar growth. Ecological Entomology, 1990, 15, 447-454.                                                         | 2.2 | 72        |
| 28 | Developmental change in aggregation, defense and escape behavior of buckmoth caterpillars,<br>Hemileuca lucina (Saturniidae). Behavioral Ecology and Sociobiology, 1987, 20, 383-388.                      | 1.4 | 70        |
| 29 | Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae. Journal of<br>Chemical Ecology, 2003, 29, 2359-2367.                                                              | 1.8 | 69        |
| 30 | Patterns of Iridoid Glycoside Production and Induction in Plantago lanceolata and the Importance of<br>Plant Age. Journal of Chemical Ecology, 2004, 30, 1723-1741.                                        | 1.8 | 69        |
| 31 | Title is missing!. Journal of Chemical Ecology, 1999, 25, 1427-1440.                                                                                                                                       | 1.8 | 67        |
| 32 | Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness. Ecology, 2016, 97, 325-337.                                                                                    | 3.2 | 65        |
| 33 | The behaviour of grey jays, Perisoreus canadensis, towards palatable and unpalatable Lepidoptera.<br>Animal Behaviour, 1990, 39, 699-705.                                                                  | 1.9 | 63        |
| 34 | Synergistic Effects of Iridoid Glycosides on the Survival, Development and Immune Response of a<br>Specialist Caterpillar, Junonia coenia (Nymphalidae). Journal of Chemical Ecology, 2012, 38, 1276-1284. | 1.8 | 62        |
| 35 | UNPALATABILITY AS A DEFENSE STRATEGY OF WESTERN CHECKERSPOT BUTTERFLIES<br>( <i>EUPHYDRYAS</i> SCUDDER, NYMPHALIDAE). Evolution; International Journal of Organic Evolution,<br>1981, 35, 367-375.         | 2.3 | 60        |
| 36 | Grasshopper Community Response to Climatic Change: Variation Along an Elevational Gradient. PLoS<br>ONE, 2010, 5, e12977.                                                                                  | 2.5 | 59        |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Unpalatability as a Defense Strategy of Euphydryas phaeton (Lepidoptera: Nymphalidae). Evolution;<br>International Journal of Organic Evolution, 1980, 34, 586.                          | 2.3 | 57        |
| 38 | Performance and allocation patterns of the perennial herb, Plantago lanceolata, in response to simulated herbivory and elevated CO2 environments. Oecologia, 1991, 87, 37-42.            | 2.0 | 56        |
| 39 | Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae).<br>Biochemical Systematics and Ecology, 1997, 25, 1-11.                             | 1.3 | 56        |
| 40 | Iridoid glycosides and insect feeding preferences: gypsy moths (Lymantria dispar, Lymantriidae) and<br>buckeyes (Junonia coenia, Nymphalidae). Ecological Entomology, 1989, 14, 247-256. | 2.2 | 55        |
| 41 | Indirect effect on survivorship of caterpillars due to presence of invertebrate predators. Oecologia,<br>1991, 88, 325-330.                                                              | 2.0 | 55        |
| 42 | Fate of Host-Plant Iridoid Glycosides in Lepidopteran Larvae of Nymphalidae and Arcthdae. Journal of<br>Chemical Ecology, 1997, 23, 2955-2965.                                           | 1.8 | 54        |
| 43 | BIRD PREDATION AS A SELECTIVE AGENT IN A BUTTERFLY POPULATION. Evolution; International Journal of Organic Evolution, 1985, 39, 93-103.                                                  | 2.3 | 52        |
| 44 | Acquired chemical defense in the lycaenid butterfly,Eumaeus atala. Journal of Chemical Ecology, 1989,<br>15, 1133-1146.                                                                  | 1.8 | 51        |
| 45 | Effects of plant phenology, nutrients and herbivory on growth and defensive chemistry of plantain,<br>Plantago lanceolata. Oikos, 2000, 88, 371-379.                                     | 2.7 | 49        |
| 46 | Plant Induced Defenses Depend More on Plant Age than Previous History of Damage: Implications for<br>Plant-Herbivore Interactions. Journal of Chemical Ecology, 2011, 37, 992-1001.      | 1.8 | 48        |
| 47 | Neighbor species differentially alter resistance phenotypes in Plantago. Oecologia, 2006, 150, 442-452.                                                                                  | 2.0 | 47        |
| 48 | Presence of predatory wasps and stinkbugs alters foraging behavior of cryptic and non-cryptic caterpillars on plantain (Plantago lanceolata). Oecologia, 1993, 95, 376-384.              | 2.0 | 46        |
| 49 | Chemical ecology of fruit defence: synergistic and antagonistic interactions among amides from <i><scp>P</scp>iper</i> . Functional Ecology, 2014, 28, 1094-1106.                        | 3.6 | 46        |
| 50 | Chemistry and Coevolution: Iridoid Clycosides, Plants, and Herbivorous Insects. , 1988, , 133-165.                                                                                       |     | 45        |
| 51 | Time is of the essence: direct and indirect effects of plant ontogenetic trajectories on higher trophic<br>levels. Ecology, 2014, 95, 2589-2602.                                         | 3.2 | 45        |
| 52 | Variable chemical defence in the checkerspot butterfly Euphydryas gillettii (Lepidoptera: Nymphalidae).<br>Ecological Entomology, 1995, 20, 208-212.                                     | 2.2 | 44        |
| 53 | Changes in plant chemical defenses and nutritional quality as a function of ontogeny in Plantago<br>lanceolata (Plantaginaceae). Oecologia, 2012, 168, 471-481.                          | 2.0 | 42        |
| 54 | Evidence for the Adaptive Significance of Secondary Compounds in Vertebrate-Dispersed Fruits.<br>American Naturalist, 2013, 182, 563-577.                                                | 2.1 | 42        |

| #  | Article                                                                                                                                                                                                                                      | IF               | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 55 | Iridoid Glycoside Variation in the Invasive Plant Dalmatian Toadflax, Linaria dalmatica<br>(Plantaginaceae), and Sequestration by the Biological Control Agent, Calophasia lunula. Journal of<br>Chemical Ecology, 2010, 36, 70-79.          | 1.8              | 40           |
| 56 | Do caterpillars disperse their damage?: larval foraging behaviour of two specialist herbivores,<br>Euphydryas phaeton (Nymphalidae) and Pieris rapae (Pieridae). Ecological Entomology, 1990, 15, 153-161.                                   | 2.2              | 38           |
| 57 | Caterpillar Chemical Defense and Parasitoid Success: Cotesia congregata Parasitism of Ceratomia catalpae. Journal of Chemical Ecology, 2010, 36, 992-998.                                                                                    | 1.8              | 38           |
| 58 | Effects of Ingested Secondary Metabolites on the Immune Response of a Polyphagous Caterpillar<br>Grammia incorrupta. Journal of Chemical Ecology, 2011, 37, 239-245.                                                                         | 1.8              | 38           |
| 59 | Patterns of Phytochemical Variation in Mimulus guttatus (Yellow Monkeyflower). Journal of<br>Chemical Ecology, 2013, 39, 525-536.                                                                                                            | 1.8              | 37           |
| 60 | Iridoid glycosides of Aureolaria flava and their sequestration by Euphydryas phaeton butterflies.<br>Phytochemistry, 1989, 28, 1601-1604.                                                                                                    | 2.9              | 36           |
| 61 | Unpalatability as a Defense Strategy of Western Checkerspot Butterflies (Euphydryas scudder,) Tj ETQq1 1 0.784                                                                                                                               | 4314 rgBT<br>2.3 | /Overlock 10 |
| 62 | Effects of cages, plant age and mechanical clipping on plantain chemistry. Oecologia, 1994, 99, 66-71.                                                                                                                                       | 2.0              | 35           |
| 63 | Factors affecting calculation of nutritional induces for foliageâ€ <del>f</del> ed insects: an experimental approach.<br>Entomologia Experimentalis Et Applicata, 1991, 61, 101-116.                                                         | 1.4              | 34           |
| 64 | Patterns of Secondary Metabolite Allocation to Fruits and Seeds in Piper reticulatum. Journal of Chemical Ecology, 2013, 39, 1373-1384.                                                                                                      | 1.8              | 34           |
| 65 | Host Plant Influences on Iridoid Glycoside Sequestration of Generalist and Specialist Caterpillars.<br>Journal of Chemical Ecology, 2010, 36, 1101-1104.                                                                                     | 1.8              | 33           |
| 66 | Plant and herbivore ontogeny interact to shape the preference, performance and chemical defense of a specialist herbivore. Oecologia, 2018, 187, 401-412.                                                                                    | 2.0              | 33           |
| 67 | Leaf variation in iridoid glycoside content ofPlantago lanceolata (Plantaginaceae) and oviposition of the buckeye,Junonia coenia (Nymphalidae). Chemoecology, 1993, 4, 72-78.                                                                | 1.1              | 31           |
| 68 | Consequences for Plantain Chemistry and Growth When Herbivores are Attacked by Predators.<br>Ecology, 1995, 77, 535-549.                                                                                                                     | 3.2              | 31           |
| 69 | Preference and performance of generalist and specialist herbivores on chemically defended host plants. Ecological Entomology, 2016, 41, 308-316.                                                                                             | 2.2              | 31           |
| 70 | Chemical tradeoffs in seed dispersal: defensive metabolites in fruits deter consumption by mutualist bats. Oikos, 2016, 125, 927-937.                                                                                                        | 2.7              | 31           |
| 71 | Evolution of growth but not structural or chemical defense in Verbascum thapsus (common mullein)<br>following introduction to North America. Biological Invasions, 2011, 13, 2379-2389.                                                      | 2.4              | 27           |
| 72 | The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval<br>development in a generalist caterpillar, Grammia incorrupta (Arctiidae). Insect Biochemistry and<br>Molecular Biology, 2012, 42, 426-434. | 2.7              | 27           |

| #  | Article                                                                                                                                                                                                                | IF               | CITATIONS             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| 73 | Combining optimal defense theory and the evolutionary dilemma model to refine predictions regarding plant invasion. Ecology, 2012, 93, 1912-1921.                                                                      | 3.2              | 26                    |
| 74 | Enemy-Free Space for Parasitoids. Environmental Entomology, 2014, 43, 1465-1474.                                                                                                                                       | 1.4              | 26                    |
| 75 | The iridoid glycoside, catalpol, as a deterrent to the predatorCamponotus floridanus (Formicidae).<br>Chemoecology, 1994, 5-6, 13-18.                                                                                  | 1.1              | 25                    |
| 76 | Influence of iridoid glycoside containing host plants on midgut β-glucosidase activity in a polyphagous<br>caterpillar, Spilosoma virginica Fabricius (Arctiidae). Journal of Insect Physiology, 2010, 56, 1907-1912.  | 2.0              | 25                    |
| 77 | Iridoid and secoiridoid glycosides in a hybrid complex of bush honeysuckles (Lonicera spp.,) Tj ETQq1 1 0.78431<br>57-63.                                                                                              | 1 rgBT /O<br>2.9 | verlock 10 Tf 3<br>25 |
| 78 | Behaviour of specialist and generalist caterpillars on plantain (Plantago lanceolata). Ecological<br>Entomology, 1992, 17, 273-279.                                                                                    | 2.2              | 24                    |
| 79 | Effect of hostplant genotype and predators on iridoid glycoside content of pupae of a specialist<br>insect herbivore, Junonia coenia (Nymphalidae). Biochemical Systematics and Ecology, 1997, 25, 571-580.            | 1.3              | 24                    |
| 80 | Incompatibility Between Plant-Derived Defensive Chemistry and Immune Response of Two Sphingid<br>Herbivores. Journal of Chemical Ecology, 2015, 41, 85-92.                                                             | 1.8              | 24                    |
| 81 | Host plant species affects the quality of the generalist <i>Trichoplusia ni</i> as a host for the polyembryonic parasitoid <i>Copidosoma floridanum</i> . Entomologia Experimentalis Et Applicata, 2010, 134, 287-295. | 1.4              | 23                    |
| 82 | Chemical Defense Across Three Trophic Levels: Catalpa bignonioides, the Caterpillar Ceratomia<br>catalpae, and its Endoparasitoid Cotesia congregata. Journal of Chemical Ecology, 2011, 37, 1063-1070.                | 1.8              | 23                    |
| 83 | Incorporation of an Introduced Weed into the Diet of a Native Butterfly: Consequences for<br>Preference, Performance and Chemical Defense. Journal of Chemical Ecology, 2013, 39, 1313-1321.                           | 1.8              | 23                    |
| 84 | Iridoid glycosides ofChelone glabra (Scrophulariaceae) and their sequestration by larvae of a sawfly,Tenthredo grandis (Tenthredinidae). Journal of Chemical Ecology, 1993, 19, 815-823.                               | 1.8              | 22                    |
| 85 | Foraging behavior of specialist and generalist caterpillars on plantain (Plantago lanceolata) altered<br>by predatory stinkbugs. Oecologia, 1992, 92, 596-602.                                                         | 2.0              | 20                    |
| 86 | Butterfly community ecology: the influences of habitat type, weather patterns, and dominant species<br>in a temperate ecosystem. Entomologia Experimentalis Et Applicata, 2012, 145, 50-61.                            | 1.4              | 19                    |
| 87 | Effect of temperature and leaf age on growth versus moulting time of a generalist caterpillar fed plantain (Plantago lanceolata). Ecological Entomology, 1994, 19, 199-206.                                            | 2.2              | 18                    |
| 88 | Use of Two Oviposition Plants in Populations of <i>Euphydryas phaeton</i> Drury (Nymphalidae).<br>Journal of the Lepidopterists' Society, 2013, 67, 299-300.                                                           | 0.2              | 18                    |
| 89 | Phenylpropanoid glycosides of Mimulus guttatus (yellow monkeyflower). Phytochemistry Letters,<br>2014, 10, 132-139.                                                                                                    | 1.2              | 18                    |
| 90 | Dietary specialization and the effects of plant species on potential multitrophic interactions of three species of nymphaline caterpillars. Entomologia Experimentalis Et Applicata, 2014, 153, 207-216.               | 1.4              | 17                    |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Host Plant Effects on Immune Response Across Development of a Specialist Caterpillar. Frontiers in Ecology and Evolution, 2019, 7, .                                                               | 2.2 | 17        |
| 92  | Avian predation on the palatable butterfly, Cercyonis pegala (Satyridae). Ecological Entomology, 1979,<br>4, 205-209.                                                                              | 2.2 | 16        |
| 93  | Population differences in larval hostplant use in the checkerspot butterfly, <i>Euphydryas<br/>chalcedona</i> . Entomologia Experimentalis Et Applicata, 1986, 40, 61-69.                          | 1.4 | 16        |
| 94  | Effects of insect herbivory on induced chemical defences and compensation during early plant development in Penstemon virgatus. Annals of Botany, 2013, 112, 661-669.                              | 2.9 | 16        |
| 95  | Foraging behaviour of caterpillars given a choice of plant genotypes in the presence of insect predators. Ecological Entomology, 2000, 25, 486-492.                                                | 2.2 | 15        |
| 96  | Use of an exotic host plant shifts immunity, chemical defense, and viral burden in wild populations of a specialist insect herbivore. Ecology and Evolution, 2022, 12, e8723.                      | 1.9 | 15        |
| 97  | Mimicry in North American checkerspot butterflies: Euphydryas phaeton and Chlosyne harrisii<br>(Nymphalidae). Ecological Entomology, 1983, 8, 1-8.                                                 | 2.2 | 14        |
| 98  | Chemical and Mechanical Defenses Vary among Maternal Lines and Leaf Ages in Verbascum thapsus L.<br>(Scrophulariaceae) and Reduce Palatability to a Generalist Insect. PLoS ONE, 2014, 9, e104889. | 2.5 | 14        |
| 99  | Comparative Herbivory Rates and Secondary Metabolite Profiles in the Leaves of Native and Non-Native Lonicera Species. Journal of Chemical Ecology, 2015, 41, 1069-1079.                           | 1.8 | 14        |
| 100 | Title is missing!. Journal of Chemical Ecology, 2000, 26, 2367-2386.                                                                                                                               | 1.8 | 13        |
| 101 | Integrating species traits and habitat characteristics into models of butterfly diversity in a fragmented ecosystem. Ecological Modelling, 2014, 281, 15-25.                                       | 2.5 | 13        |
| 102 | Soil nitrogen availability and herbivore attack influence the chemical defenses of an invasive plant<br>(Linaria dalmatica; Plantaginaceae). Chemoecology, 2012, 22, 1-11.                         | 1.1 | 12        |
| 103 | Iridoid glycosides from fruits reduce the growth of fungi associated with fruit rot. Journal of Plant<br>Ecology, 2016, 9, 357-366.                                                                | 2.3 | 12        |
| 104 | Grasshopper response to reductions in habitat area as mediated by subfamily classification and life history traits. Journal of Insect Conservation, 2011, 15, 409-419.                             | 1.4 | 11        |
| 105 | Overcrowding Leads to Lethal Oviposition Mistakes in the Baltimore Checkerspot, <i>Euphydryas phaeton </i> Drury (Nymphalidae). Journal of the Lepidopterists' Society, 2013, 67, 227-229.         | 0.2 | 11        |
| 106 | Non-target effects of grass-specific herbicides differ among species, chemicals and host plants in<br>Euphydryas butterflies. Journal of Insect Conservation, 2016, 20, 867-877.                   | 1.4 | 11        |
| 107 | Host plant iridoid glycosides mediate herbivore interactions with natural enemies. Oecologia, 2018, 188, 491-500.                                                                                  | 2.0 | 11        |
| 108 | Variation in iridoid glycosides in a population of Plantago patagonica Jacq. (Plantaginaceae) in<br>Colorado. Biochemical Systematics and Ecology, 1996, 24, 207-210.                              | 1.3 | 10        |

| #   | Article                                                                                                                                                                                          | IF       | CITATIONS    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 109 | Nitrogen enrichment differentially affects above- and belowground plant defense. American Journal of Botany, 2012, 99, 1630-1637.                                                                | 1.7      | 10           |
| 110 | Conifer Monoterpene Chemistry during an Outbreak Enhances Consumption and Immune Response of an Eruptive Folivore. Journal of Chemical Ecology, 2016, 42, 1281-1292.                             | 1.8      | 9            |
| 111 | A Comparison of Sample Preparation Techniques for Quantifying Iridoid Glycosides Sequestered by<br>Lepidopteran Larvae. Journal of Chemical Ecology, 2011, 37, 496-499.                          | 1.8      | 8            |
| 112 | Plantâ€mediated effects of soil nitrogen enrichment on a chemically defended specialist herbivore,<br>Calophasia lunula. Ecological Entomology, 2012, 37, 300-308.                               | 2.2      | 8            |
| 113 | Preference, performance, and chemical defense in an endangered butterfly using novel and ancestral host plants. Scientific Reports, 2021, 11, 992.                                               | 3.3      | 8            |
| 114 | Variation and Developmental Change in Activity of Gregarious Caterpillars, Hemileuca Lucina<br>(Saturniidae). Psyche: Journal of Entomology, 1988, 95, 45-58.                                    | 0.9      | 7            |
| 115 | Hemiparasites can transmit indirect effects from their host plants to herbivores. Ecology, 2018, 99, 399-410.                                                                                    | 3.2      | 7            |
| 116 | Critical Phenological Events Affect Chemical Defense of Plant Tissues: Iridoid Glycosides in a Woody<br>Shrub. Journal of Chemical Ecology, 2020, 46, 206-216.                                   | 1.8      | 7            |
| 117 | Factors Affecting Host-plant Use by the Montane Butterfly Euphydryas gillettii (Nymphalidae).<br>American Midland Naturalist, 1987, 118, 153.                                                    | 0.4      | 6            |
| 118 | Detrimental effects of plant compounds on a polyembryonic parasitoid are mediated through its<br>highly polyphagous herbivore host. Entomologia Experimentalis Et Applicata, 2013, 148, 267-274. | 1.4      | 5            |
| 119 | Host Plant Suitability in a Specialist Herbivore, Euphydryas anicia (Nymphalidae): Preference,<br>Performance and Sequestration. Journal of Chemical Ecology, 2018, 44, 1051-1057.               | 1.8      | 5            |
| 120 | The Perennial Penstemon: Variation in Defensive Chemistry Across Years, Populations, and Tissues.<br>Journal of Chemical Ecology, 2017, 43, 599-607.                                             | 1.8      | 4            |
| 121 | Iridoid glycoside and allozyme variation within and among populations of Plantago rhodosperma<br>decne. (Plantaginaceae). Biochemical Systematics and Ecology, 1997, 25, 581-590.                | 1.3      | 3            |
| 122 | Localization of Defensive Chemicals in Two Congeneric Butterflies (Euphydryas, Nymphalidae). Journal<br>of Chemical Ecology, 2017, 43, 480-486.                                                  | 1.8      | 3            |
| 123 | Solitary Floral Specialists Do Not Respond to Cryptic Flower-Occupying Predators. Journal of Insect Behavior, 2018, 31, 642-655.                                                                 | 0.7      | 2            |
| 124 | Seasonal Variation in Host Plant Chemistry Drives Sequestration in a Specialist Caterpillar. Journal of<br>Chemical Ecology, 2022, 48, 79-88.                                                    | 1.8      | 1            |
| 125 | Hostplant Choice of Checkerspot Larvae: Euphydr Yas Chalcedona, E. Colon, and Hybrids (Lepidoptera:) Tj ETQq1                                                                                    | 1 0.7843 | 14 rgBT /Ove |