List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5122834/publications.pdf Version: 2024-02-01

		22153	21540
118	17,536	59	114
papers	citations	h-index	g-index
151	151	151	26998
all docs	docs citations	times ranked	citing authors

MELANIE OTT

#	Article	IF	CITATIONS
1	Novel RT-ddPCR assays for measuring the levels of subgenomic and genomic SARS-CoV-2 transcripts. Methods, 2022, 201, 15-25.	3.8	26
2	Modelling T-cell immunity against hepatitis C virus with liver organoids in a microfluidic coculture system. Open Biology, 2022, 12, 210320.	3.6	20
3	Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell, 2022, 185, 1539-1548.e5.	28.9	126
4	Neutralizing antibody activity against SARS-CoV-2 variants in gestational age–matched mother-infant dyads after infection or vaccination. JCI Insight, 2022, 7, .	5.0	13
5	Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature, 2022, 607, 351-355.	27.8	143
6	Viral E protein neutralizes BET protein-mediated post-entry antagonism of SARS-CoV-2. Cell Reports, 2022, 40, 111088.	6.4	15
7	Tropism of SARS-CoV-2 for human cortical astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	77
8	An â€~Arms Race' between the Nonsense-mediated mRNA Decay Pathway and Viral Infections. Seminars in Cell and Developmental Biology, 2021, 111, 101-107.	5.0	15
9	Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell, 2021, 184, 323-333.e9.	28.9	613
10	Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell, 2021, 184, 106-119.e14.	28.9	320
11	Evaluating a New Class of AKT/mTOR Activators for HIV Latency-Reversing Activity <i>Ex Vivo</i> and <i>In Vivo</i> . Journal of Virology, 2021, 95, .	3.4	13
12	A genome-wide CRISPR screen identifies UFMylation and TRAMP-like complexes as host factors required for hepatitis A virus infection. Cell Reports, 2021, 34, 108859.	6.4	37
13	SARS-CoV-2 infection of human iPSC–derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Science Translational Medicine, 2021, 13, .	12.4	143
14	Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Scientific Reports, 2021, 11, 12310.	3.3	31
15	Novel RT-ddPCR assays for simultaneous quantification of multiple noncoding and coding regions of SARS-CoV-2 RNA. Journal of Virological Methods, 2021, 292, 114115.	2.1	19
16	Screening a Library of FDA-Approved and Bioactive Compounds for Antiviral Activity against SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 2337-2351.	3.8	23
17	Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell, 2021, 184, 3426-3437.e8.	28.9	424
18	Accelerated RNA detection using tandem CRISPR nucleases. Nature Chemical Biology, 2021, 17, 982-988.	8.0	135

#	Article	IF	CITATIONS
19	Identification of a therapeutic interfering particle—A single-dose SARS-CoV-2 antiviral intervention with a high barrier to resistance. Cell, 2021, 184, 6022-6036.e18.	28.9	36
20	Rapid assessment of SARS-CoV-2–evolved variants using virus-like particles. Science, 2021, 374, 1626-1632.	12.6	216
21	EDITORIAL: Hydration for Clean Air Today. Molecular Frontiers Journal, 2021, 05, 1-4.	1.1	5
22	Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy InÂVivo. Cell Stem Cell, 2020, 27, 840-851.e6.	11.1	84
23	SIRT1 is downregulated by autophagy in senescence and ageing. Nature Cell Biology, 2020, 22, 1170-1179.	10.3	236
24	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	12.6	508
25	Modeling Multi-organ Infection by SARS-CoV-2ÂUsing Stem Cell Technology. Cell Stem Cell, 2020, 27, 859-868.	11.1	27
26	Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell, 2020, 27, 876-889.e12.	11.1	167
27	Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature Metabolism, 2020, 2, 1265-1283.	11.9	206
28	An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 2020, 370, 1473-1479.	12.6	336
29	A combinatorial view of old and new RNA polymerase II modifications. Transcription, 2020, 11, 66-82.	3.1	13
30	FOXO1 promotes HIV latency by suppressing ER stress in T cells. Nature Microbiology, 2020, 5, 1144-1157.	13.3	18
31	The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.	28.9	825
32	Turning up the heat on HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16109-16111.	7.1	1
33	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	27.8	3,542
34	Low expression of RNA sensors impacts Zika virus infection in the lower female reproductive tract. Nature Communications, 2019, 10, 4344.	12.8	13
35	High-Resolution Mass Spectrometry to Identify and Quantify Acetylation Protein Targets. Methods in Molecular Biology, 2019, 1983, 3-16.	0.9	15
36	Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins. Molecular Cell, 2019, 74, 1164-1174.e4.	9.7	22

#	Article	IF	CITATIONS
37	Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chemical Reviews, 2018, 118, 1216-1252.	47.7	236
38	Metabolic reprogramming of human CD8+ memory T cells through loss of SIRT1. Journal of Experimental Medicine, 2018, 215, 51-62.	8.5	91
39	The Cellular NMD Pathway Restricts Zika Virus Infection and Is Targeted by the Viral Capsid Protein. MBio, 2018, 9, .	4.1	60
40	A BAF'ling Approach to Curing HIV. Cell Chemical Biology, 2018, 25, 1441-1442.	5.2	3
41	Tat Expression and Function. , 2018, , 1976-1985.		0
42	SMYD2-Mediated Histone Methylation Contributes to HIV-1 Latency. Cell Host and Microbe, 2017, 21, 569-579.e6.	11.0	78
43	The Short Isoform of BRD4 Promotes HIV-1 Latency by Engaging Repressive SWI/SNF Chromatin-Remodeling Complexes. Molecular Cell, 2017, 67, 1001-1012.e6.	9.7	99
44	Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Research and Human Retroviruses, 2017, 33, S-8-S-22.	1.1	35
45	Flow Cytometric Analysis of Drug-induced HIV-1 Transcriptional Activity in A2 and A72 J-Lat Cell Lines. Bio-protocol, 2017, 7, .	0.4	2
46	Flow Cytometric Analysis of HIV-1 Transcriptional Activity in Response to shRNA Knockdown in A2 and A72 J-Lat Cell Lines. Bio-protocol, 2017, 7, .	0.4	0
47	Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity. ELife, 2016, 5, .	6.0	55
48	International AIDS Society global scientific strategy: towards an HIV cure 2016. Nature Medicine, 2016, 22, 839-850.	30.7	395
49	Zinc supplementation induces regulatory T cells by inhibition of Sirtâ€1 deacetylase in mixed lymphocyte cultures. Molecular Nutrition and Food Research, 2016, 60, 661-671.	3.3	89
50	Retrovirus Integration: Some Assembly Required?. Cell Host and Microbe, 2016, 20, 702-704.	11.0	2
51	The mTOR Complex Controls HIV Latency. Cell Host and Microbe, 2016, 20, 785-797.	11.0	179
52	The HIV-1 Tat Protein Is Monomethylated at Lysine 71 by the Lysine Methyltransferase KMT7. Journal of Biological Chemistry, 2016, 291, 16240-16248.	3.4	16
53	Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. Journal of Experimental Medicine, 2016, 213, 2913-2929.	8.5	42
54	Entangled in a membranous web: ER and lipid droplet reorganization during hepatitis C virus infection. Current Opinion in Cell Biology, 2016, 41, 117-124.	5.4	30

#	Article	IF	CITATIONS
55	Therapeutics Targeting Protein Acetylation Perturb Latency of Human Viruses. ACS Chemical Biology, 2016, 11, 669-680.	3.4	8
56	50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nature Reviews Molecular Cell Biology, 2015, 16, 258-264.	37.0	680
57	A Combined Proteomics/Genomics Approach Links Hepatitis C Virus Infection with Nonsense-Mediated mRNA Decay. Molecular Cell, 2015, 57, 329-340.	9.7	124
58	SIRT1 deacetylates RORÎ ³ t and enhances Th17 cell generation. Journal of Experimental Medicine, 2015, 212, 607-617.	8.5	126
59	Evolution of lysine acetylation in the RNA polymerase II C-terminal domain. BMC Evolutionary Biology, 2015, 15, 35.	3.2	19
60	Membrane Flotation Assay. Bio-protocol, 2015, 5, .	0.4	4
61	Manipulation of the host protein acetylation network by human immunodeficiency virus type 1. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 314-25.	5.2	16
62	Activating Latent HIV by Inhibiting Bromodomain Proteins. , 2015, , 225-241.		0
63	The Hepatitis C Virus Core Protein Inhibits Adipose Triglyceride Lipase (ATGL)-mediated Lipid Mobilization and Enhances the ATGL Interaction with Comparative Gene Identification 58 (CGI-58) and Lipid Droplets. Journal of Biological Chemistry, 2014, 289, 35770-35780.	3.4	29
64	Acetylphosphate: A Novel Link between Lysine Acetylation and Intermediary Metabolism in Bacteria. Molecular Cell, 2013, 51, 132-134.	9.7	15
65	Lipid Droplets and Viral Infections. Methods in Cell Biology, 2013, 116, 167-190.	1.1	26
66	Acetylation of RNA Polymerase II Regulates Growth-Factor-Induced Gene Transcription in Mammalian Cells. Molecular Cell, 2013, 52, 314-324.	9.7	103
67	Diacylglycerol Acyltransferase-1 Localizes Hepatitis C Virus NS5A Protein to Lipid Droplets and Enhances NS5A Interaction with the Viral Capsid Core. Journal of Biological Chemistry, 2013, 288, 9915-9923.	3.4	109
68	Snapshots: Chromatin control of viral infection. Virology, 2013, 435, 141-156.	2.4	133
69	Rapid Intracellular Competition between Hepatitis C Viral Genomes as a Result of Mitosis. Journal of Virology, 2013, 87, 581-596.	3.4	11
70	Three Rules for HIV Latency: Location, Location, and Location. Cell Host and Microbe, 2013, 13, 625-626.	11.0	6
71	How the antiviral immune response boosts liver fat. Nature Medicine, 2013, 19, 671-672.	30.7	1
72	Bromodomain Proteins in HIV Infection. Viruses, 2013, 5, 1571-1586.	3.3	35

#	Article	IF	CITATIONS
73	Lipid Droplet-Binding Protein TIP47 Regulates Hepatitis C Virus RNA Replication through Interaction with the Viral NS5A Protein. PLoS Pathogens, 2013, 9, e1003302.	4.7	97
74	BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle, 2013, 12, 452-462.	2.6	209
75	Evasion of Superinfection Exclusion and Elimination of Primary Viral RNA by an Adapted Strain of Hepatitis C Virus. Journal of Virology, 2013, 87, 13354-13369.	3.4	44
76	Two-pronged Binding with Bromodomain-containing Protein 4 Liberates Positive Transcription Elongation Factor b from Inactive Ribonucleoprotein Complexes. Journal of Biological Chemistry, 2012, 287, 1090-1099.	3.4	154
77	Emerging Role of Lipid Droplets in Host/Pathogen Interactions. Journal of Biological Chemistry, 2012, 287, 2280-2287.	3.4	102
78	Three Novel Acetylation Sites in the Foxp3 Transcription Factor Regulate the Suppressive Activity of Regulatory T Cells. Journal of Immunology, 2012, 188, 2712-2721.	0.8	137
79	Diacylglycerol acyltransferase 1 (DGAT1) Functions as a Cellular "Hub―to Target Hepatitis C Virus Proteins NS5A and Core to Lipid Droplets. FASEB Journal, 2012, 26, 357.1.	0.5	0
80	The Control of HIV Transcription: Keeping RNA Polymerase II on Track. Cell Host and Microbe, 2011, 10, 426-435.	11.0	230
81	Characterization of HIV Tat modifications using novel methyl-lysine-specific antibodies. Methods, 2011, 53, 91-96.	3.8	16
82	HIV never ceases to surprise: Innovative methods in the quest for a cure. Methods, 2011, 53, 1-2.	3.8	0
83	Unique ties between hepatitis C virus replication and intracellular lipids. Trends in Endocrinology and Metabolism, 2011, 22, 241-248.	7.1	97
84	Hepatitis C Virus Core Protein Decreases Lipid Droplet Turnover. Journal of Biological Chemistry, 2011, 286, 42615-42625.	3.4	70
85	Activation of HIV Transcription by the Viral Tat Protein Requires a Demethylation Step Mediated by Lysine-specific Demethylase 1 (LSD1/KDM1). PLoS Pathogens, 2011, 7, e1002184.	4.7	86
86	HAT Trick: p300, Small Molecule, Inhibitor. Chemistry and Biology, 2010, 17, 417-418.	6.0	13
87	Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nature Medicine, 2010, 16, 1295-1298.	30.7	293
88	CYCLINg through transcription: Post-translational modifications of P-TEFb regulate transcription elongation. Cell Cycle, 2010, 9, 1697-1705.	2.6	63
89	The Cellular Lysine Methyltransferase Set7/9-KMT7 Binds HIV-1 TAR RNA, Monomethylates the Viral Transactivator Tat, and Enhances HIV Transcription. Cell Host and Microbe, 2010, 7, 234-244.	11.0	88
90	Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy. Neuron, 2010, 67, 953-966.	8.1	772

#	Article	IF	CITATIONS
91	Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy. Neuron, 2010, 68, 801.	8.1	7
92	Acetylation of cyclin T1 regulates the equilibrium between active and inactive P-TEFb in cells. EMBO Journal, 2009, 28, 1407-1417.	7.8	60
93	The ups and downs of SIRT1. Trends in Biochemical Sciences, 2008, 33, 517-525.	7.5	214
94	Human Immunodeficiency Virus Type 1 Tat Protein Inhibits the SIRT1 Deacetylase and Induces T Cell Hyperactivation. Cell Host and Microbe, 2008, 3, 158-167.	11.0	149
95	Tat Acetylation: A Regulatory Switch between Early and Late Phases in HIV Transcription Elongation. Novartis Foundation Symposium, 2008, , 182-196.	1.1	41
96	Optical Reporters for the Conformation of α-Synuclein Reveal a Specific Interaction with Mitochondria. Journal of Neuroscience, 2008, 28, 12305-12317.	3.6	185
97	Recruitment and Activation of RSK2 by HIV-1 Tat. PLoS ONE, 2007, 2, e151.	2.5	17
98	The SWI/SNF Chromatin-remodeling Complex Is a Cofactor for Tat Transactivation of the HIV Promoter. Journal of Biological Chemistry, 2006, 281, 19960-19968.	3.4	152
99	Decoding Tat: the biology of HIV Tat posttranslational modifications. Microbes and Infection, 2005, 7, 1364-1369.	1.9	48
100	SIRT1 Regulates HIV Transcription via Tat Deacetylation. PLoS Biology, 2005, 3, e41.	5.6	292
101	Probing Lysine Acetylation in Proteins. Molecular and Cellular Proteomics, 2005, 4, 1226-1239.	3.8	44
102	Analysis of p300 acetyltransferase substrate specificity by MALDI TOF mass spectrometry. Methods, 2005, 36, 376-382.	3.8	7
103	Targeting of Hepatitis C Virus Core Protein to Mitochondria through a Novel C-Terminal Localization Motif. Journal of Virology, 2004, 78, 7958-7968.	3.4	144
104	HIV-1 Nef Mimics an Integrin Receptor Signal that Recruits the Polycomb Group Protein Eed to the Plasma Membrane. Molecular Cell, 2004, 13, 179-190.	9.7	73
105	Tat acetylation: a regulatory switch between early and late phases in HIV transcription elongation. Novartis Foundation Symposium, 2004, 259, 182-93; discussion 193-6, 223-5.	1.1	25
106	Acetylation of the HIV-1 Tat protein: an in vitro study. Analytical and Bioanalytical Chemistry, 2003, 376, 994-1005.	3.7	18
107	Acetylation of Tat Defines a CyclinT1-Independent Step in HIV Transactivation. Molecular Cell, 2003, 12, 167-176.	9.7	113
108	Release and Intercellular Transfer of Cell Surface CD81 Via Microparticles. Journal of Immunology, 2002, 169, 5531-5537.	0.8	71

#	Article	IF	CITATIONS
109	The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide–dependent deacetylase. Journal of Cell Biology, 2002, 158, 647-657.	5.2	524
110	Structural Basis of Lysine-Acetylated HIV-1 Tat Recognition by PCAF Bromodomain. Molecular Cell, 2002, 9, 575-586.	9.7	229
111	Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO Journal, 2002, 21, 2715-2723.	7.8	126
112	HIV-1 protein Tat reduces the glutamate-induced intracellular Ca2+increase in cultured cortical astrocytes. European Journal of Neuroscience, 2001, 14, 1793-1799.	2.6	21
113	Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Current Biology, 1999, 9, 1489-1493.	3.9	274
114	Mutations in the <i>tat</i> Gene Are Responsible for Human Immunodeficiency Virus Type 1 Postintegration Latency in the U1 Cell Line. Journal of Virology, 1998, 72, 1666-1670.	3.4	174
115	Immune Hyperactivation of HIV-1-Infected T Cells Mediated by Tat and the CD28 Pathway. Science, 1997, 275, 1481-1485.	12.6	223
116	A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6377-6381.	7.1	158
117	Role of chromatin in the transcriptional regulation of HIV-1. Journal of Cancer Research and Clinical Oncology, 1995, 121, S36-S36.	2.5	0
118	Interleukin-2, soluble interleukin-2-receptor, neopterin,l-tryptophan and ?2-microglobulin levels in CSF and serum of patients with relapsing-remitting or chronic-progressive multiple sclerosis. Journal of Neurology, 1993, 241, 108-114.	3.6	48