
Thomas Nauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5120706/publications.pdf Version: 2024-02-01

THOMAS NALISER

#	Article	IF	CITATIONS
1	Impact of substitution on reactions and stability of one-electron oxidised phenyl sulfonates in aqueous solution. Physical Chemistry Chemical Physics, 2022, 24, 895-901.	2.8	6
2	Initiation and Prevention of Biological Damage by Radiation-Generated Protein Radicals. International Journal of Molecular Sciences, 2022, 23, 396.	4.1	7
3	Moderation of Oxidative Damage on Aromatic Hydrocarbon-Based Polymers. Journal of the Electrochemical Society, 2022, 169, 054529.	2.9	3
4	Possible Repair Mechanism for Hydrocarbon-Based Ionomers Following Damage by Radical Attack. Journal of the Electrochemical Society, 2021, 168, 054514.	2.9	9
5	Unexpected Disparity in Photoinduced Reactions of C ₆₀ and C ₇₀ in Water with the Generation of O ₂ ^{•–} or ¹ O ₂ . Jacs Au, 2021, 1, 1601-1611.	7.9	9
6	Fast Antioxidant Reaction of Polyphenols and Their Metabolites. Antioxidants, 2021, 10, 1297.	5.1	18
7	Attack of hydroxyl radicals to α-methyl-styrene sulfonate polymers and cerium-mediated repair <i>via</i> radical cations. Physical Chemistry Chemical Physics, 2020, 22, 4516-4525.	2.8	10
8	Addition of carbon-centered radicals to aromatic antioxidants: mechanistic aspects. Physical Chemistry Chemical Physics, 2020, 22, 24572-24582.	2.8	5
9	Thinking Outside the Cage: A New Hypothesis That Accounts for Variable Yields of Radicals from the Reaction of CO ₂ with ONOO [–] . Chemical Research in Toxicology, 2020, 33, 1516-1527.	3.3	10
10	Synthese, Charakterisierung und Reaktivitäeines Nitrooxylierungsreagenzes basierend auf einer hypervalenten lodverbindung. Angewandte Chemie, 2020, 132, 17312-17319.	2.0	5
11	Synthesis, Characterization, and Reactivity of a Hypervalentâ€lodineâ€Based Nitrooxylating Reagent. Angewandte Chemie - International Edition, 2020, 59, 17162-17168.	13.8	17
12	Antioxidants and radical damage in a hydrophilic environment: chemical reactions and concepts. Essays in Biochemistry, 2020, 64, 67-74.	4.7	8
13	Thermochemical unification of molecular descriptors to predict radical hydrogen abstraction with low computational cost. Physical Chemistry Chemical Physics, 2020, 22, 23215-23225.	2.8	4
14	Fast reaction of carbon free radicals with flavonoids and other aromatic compounds. Archives of Biochemistry and Biophysics, 2019, 674, 108107.	3.0	13
15	Profiling the oxidative activation of DMSO-F ₆ by pulse radiolysis and translational potential for radical C–H trifluoromethylation. Organic and Biomolecular Chemistry, 2019, 17, 9734-9742.	2.8	2
16	Perspective—Prospects for Durable Hydrocarbon-Based Fuel Cell Membranes. Journal of the Electrochemical Society, 2018, 165, F3100-F3103.	2.9	47
17	Antioxidant Strategies for Hydrocarbon-Based Membranes. ECS Transactions, 2018, 86, 369-379.	0.5	6
18	Rate of single electron reduction of Togni's reagent. Journal of Fluorine Chemistry, 2017, 203, 218-222.	1.7	8

THOMAS NAUSER

#	Article	IF	CITATIONS
19	An Experimental Radical Electrophilicity Index. ChemPhysChem, 2017, 18, 2973-2976.	2.1	22
20	Reaction rates of glutathione and ascorbate with alkyl radicals are too slow for protection against protein peroxidation inÂvivo. Archives of Biochemistry and Biophysics, 2017, 633, 118-123.	3.0	12
21	Physiological Concentrations of Ascorbate Cannot Prevent the Potentially Damaging Reactions of Protein Radicals in Humans. Chemical Research in Toxicology, 2017, 30, 1702-1710.	3.3	11
22	Electrode Potentials of <scp>l</scp> -Tryptophan, <scp>l</scp> -Tyrosine, 3-Nitro- <scp>l</scp> -tyrosine, 2,3-Difluoro- <scp>l</scp> -tyrosine, and 2,3,5-Trifluoro- <scp>l</scp> -tyrosine. Biochemistry, 2016, 55, 2849-2856.	2.5	21
23	Shielding effects in spacious macromolecules: a case study with dendronized polymers. Photochemical and Photobiological Sciences, 2016, 15, 964-968.	2.9	6
24	Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics, 2016, 10, 585-589.	31.4	437
25	Primary photochemistry of peroxynitrite in aqueous solution. Chemical Physics Letters, 2015, 641, 187-192.	2.6	5
26	Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radical Biology and Medicine, 2015, 80, 158-163.	2.9	40
27	Intramolecular 1,2―and 1,3â€Hydrogen Transfer Reactions of Thiyl Radicals. Israel Journal of Chemistry, 2014, 54, 265-271.	2.3	9
28	Repair of Protein Radicals by Antioxidants. Israel Journal of Chemistry, 2014, 54, 254-264.	2.3	14
29	Carbon-centered radicals add reversibly to histidine – implications. Chemical Communications, 2014, 50, 14349-14351.	4.1	13
30	Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition. Free Radical Biology and Medicine, 2014, 70, 86-95.	2.9	27
31	Why Selenocysteine Replaces Cysteine in Thioredoxin Reductase: A Radical Hypothesis. Biochemistry, 2014, 53, 5017-5022.	2.5	33
32	Hydrogen Exchange Equilibria in Thiols. Chemical Research in Toxicology, 2012, 25, 1862-1867.	3.3	18
33	Reversible Hydrogen Transfer Reactions in Thiyl Radicals From Cysteine and Related Molecules: Absolute Kinetics and Equilibrium Constants Determined by Pulse Radiolysis. Journal of Physical Chemistry B, 2012, 116, 5329-5341.	2.6	47
34	Why do proteins use selenocysteine instead of cysteine?. Amino Acids, 2012, 42, 39-44.	2.7	57
35	Hydrogen Exchange Equilibria in Glutathione Radicals: Rate Constants. Chemical Research in Toxicology, 2010, 23, 1596-1600.	3.3	39
36	Reversible Intramolecular Hydrogen Transfer between Cysteine Thiyl Radicals and Glycine and Alanine in Model Peptides: Absolute Rate Constants Derived from Pulse Radiolysis and Laser Flash Photolysis. Journal of Physical Chemistry B, 2008, 112, 15034-15044.	2.6	69

THOMAS NAUSER

#	Article	IF	CITATIONS
37	Catalysis of Electron Transfer by Selenocysteineâ€. Biochemistry, 2006, 45, 6038-6043.	2.5	95
38	The kinetics of oxidation of GSH by protein radicals. Biochemical Journal, 2005, 392, 693-701.	3.7	72
39	Calmodulin methionine residues are targets for one-electron oxidation by hydroxyl radicals: formation of Sâ^N three-electron bonded radical complexes. Chemical Communications, 2005, , 587-589.	4.1	22
40	UV Photolysis of 3-Nitrotyrosine Generates Highly Oxidizing Species:Â A Potential Source of Photooxidative Stress. Chemical Research in Toxicology, 2004, 17, 1227-1235.	3.3	11
41	Thiyl Radical Reaction with Amino Acid Side Chains:Â Rate Constants for Hydrogen Transfer and Relevance for Posttranslational Protein Modification. Chemical Research in Toxicology, 2004, 17, 1323-1328.	3.3	78
42	Thiyl Radical Reaction with Thymine:Â Absolute Rate Constant for Hydrogen Abstraction and Comparison to Benzylic Câ^'H Bonds. Chemical Research in Toxicology, 2003, 16, 1056-1061.	3.3	22
43	Thiyl Radicals Abstract Hydrogen Atoms from theαCâ^'H Bonds in Model Peptides: Absolute Rate Constants and Effect of Amino Acid Structure. Journal of the American Chemical Society, 2003, 125, 2042-2043.	13.7	91