
Takuji Oka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5120253/publications.pdf Version: 2024-02-01

Τλκιμι Οκλ

#	Article	IF	CITATIONS
1	Identification and characterization of β-d-galactofuranosidases from Aspergillus nidulans and Aspergillus fumigatus. Journal of Bioscience and Bioengineering, 2021, 131, 1-7.	2.2	5
2	Glycan-Mediated Interactions Between Fungal and Higher Animal Cells. , 2021, , 110-118.		0
3	Structural basis for the core-mannan biosynthesis of cell wall fungal-type galactomannan in Aspergillus fumigatus. Journal of Biological Chemistry, 2020, 295, 15407-15417.	3.4	3
4	Biosynthesis of β-(1→5)-Galactofuranosyl Chains of Fungal-Type and <i>O</i> -Mannose-Type Galactomannans within the Invasive Pathogen Aspergillus fumigatus. MSphere, 2020, 5, .	2.9	13
5	Chemo-enzymatic synthesis of p-nitrophenyl β-D-galactofuranosyl disaccharides from Aspergillus sp. fungal-type galactomannan. Carbohydrate Research, 2019, 473, 99-103.	2.3	6
6	Biosynthesis of galactomannans found in filamentous fungi belonging to <i>Pezizomycotina</i> . Bioscience, Biotechnology and Biochemistry, 2018, 82, 183-191.	1.3	28
7	Cloning, Purification, and Characterization of Tripeptidyl Peptidase from Streptomyces herbaricolor TY-21. Applied Biochemistry and Biotechnology, 2018, 184, 239-252.	2.9	2
8	Identification of Two Mannosyltransferases Contributing to Biosynthesis of the Fungal-type Galactomannan α-Core-Mannan Structure in Aspergillus fumigatus. Scientific Reports, 2018, 8, 16918.	3.3	20
9	GfsA is a β1,5-galactofuranosyltransferase involved in the biosynthesis of the galactofuran side chain of fungal-type galactomannan in Aspergillus fumigatus. Clycobiology, 2017, 27, 568-581.	2.5	32
10	Characterization of a PA14 domain-containing galactofuranose-specific β- <scp>d</scp> -galactofuranosidase from <i>Streptomyces</i> sp Bioscience, Biotechnology and Biochemistry, 2017, 81, 1314-1319.	1.3	10
11	Biosynthesis of Galactofuranose-containing Glycans in Filamentous Fungi. Trends in Glycoscience and Glycotechnology, 2016, 28, E39-E45.	0.1	5
12	Chemical Analysis of the Sugar Moiety of Monohexosylceramide Contained in Koji, Japanese Traditional Rice Fermented with Aspergillus. Fermentation, 2016, 2, 2.	3.0	20
13	Biosynthesis of Galactofuranose-containing Glycans in Filamentous Fungi. Trends in Glycoscience and Glycotechnology, 2016, 28, J39-J45.	0.1	4
14	Response to Leopoldo Palma. Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895. Toxins, 2015, 7, 5096-5097.	3.4	1
15	Isolation, sequencing, and heterologous expression of the Paecilomyces variotii gene encoding S-hydroxymethylglutathione dehydrogenase (fldA). Applied Microbiology and Biotechnology, 2015, 99, 1755-1763.	3.6	5
16	Identification and Characterization of a Novel Galactofuranose-Specific Î ² -D-Galactofuranosidase from Streptomyces Species. PLoS ONE, 2015, 10, e0137230.	2.5	18
17	Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins, 2014, 6, 1882-1895.	3.4	29
18	Draft Genome Sequence of the Formaldehyde-Resistant Fungus <i>Byssochlamys spectabilis</i> No. 5 (Anamorph Paecilomyces variotii No. 5) (NBRC109023). Genome Announcements, 2014, 2, .	0.8	19

Τακυji Οκα

#	Article	IF	CITATIONS
19	Identification of Novel Peptidyl Serine α-Galactosyltransferase Gene Family in Plants. Journal of Biological Chemistry, 2014, 289, 20405-20420.	3.4	62

20 ç³,状èŒã«ç‰¹ç•°ã³ã,¬ãf©ã,¯ãf°ãf•ãf©ãfŽãf¼ã,¹ï¼^Calf)ç³–鎖ã[@]ç"Ÿå•̂戕 Kagaku To Seibutsu, 2014, 5**0**,0749-75**6**.

21	Purification of the GfsA-3x FLAG Protein Expressed in Aspergillus nidulans. Bio-protocol, 2014, 4, .	0.4	2
22	Determination of D-galactofuranose Content of Galactomannoproteins in Aspergillus nidulans. Bio-protocol, 2014, 4, .	0.4	0
23	<scp><i>gfsA</i></scp> encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of <i><scp>O</scp></i> â€glycan in <i><scp>A</scp>spergillus nidulans</i> and <i><scp>A</scp>spergillus fumigatus</i> . Molecular Microbiology, 2013, 90, 1054-1073.	2.5	60
24	Purification and properties of S-hydroxymethylglutathione dehydrogenase of Paecilomyces variotii no. 5, a formaldehyde-degrading fungus. AMB Express, 2012, 2, 32.	3.0	5
25	Putative Stress Sensors WscA and WscB Are Involved in Hypo-Osmotic and Acidic pH Stress Tolerance in Aspergillus nidulans. Eukaryotic Cell, 2011, 10, 1504-1515.	3.4	60
26	Protein <i>O</i> -Mannosyltransferases B and C Support Hyphal Development and Differentiation in <i>Aspergillus nidulans</i> . Eukaryotic Cell, 2009, 8, 1465-1474.	3.4	43
27	Functional UDP-xylose Transport across the Endoplasmic Reticulum/Golgi Membrane in a Chinese Hamster Ovary Cell Mutant Defective in UDP-xylose Synthase. Journal of Biological Chemistry, 2009, 284, 2576-2583.	3.4	61
28	Characterization of Endoplasmic Reticulum-Localized UDP- <scp>d</scp> -Galactose: Hydroxyproline <i>O</i> -Galactosyltransferase Using Synthetic Peptide Substrates in Arabidopsis Â. Plant Physiology, 2009, 152, 332-340.	4.8	28
29	Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology, 2008, 18, 303-314.	2.5	51
30	Functional Analysis of Arabidopsis thaliana RHM2/MUM4, a Multidomain Protein Involved in UDP-D-glucose to UDP-L-rhamnose Conversion. Journal of Biological Chemistry, 2007, 282, 5389-5403.	3.4	147
31	Reconstruction ofde novopathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose inSaccharomyces cerevisiae. FEBS Journal, 2006, 273, 2645-2657.	4.7	71
32	Protein O-mannosyltransferase A of Aspergillus awamori is involved in O-mannosylation of glucoamylase I. Microbiology (United Kingdom), 2005, 151, 3657-3667.	1.8	34
33	Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiology (United Kingdom), 2004, 150, 1973-1982.	1.8	73
34	Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme and Microbial Technology, 2004, 34, 482-489.	3.2	71
35	Thr/Ser-rich Domain ofAspergillusGlucoamylase Is Essential for Secretion. Bioscience, Biotechnology and Biochemistry, 2004, 68, 961-963.	1.3	11
36	Effects of Amino Acid Alterations on the Transglycosylation Reaction of Endoglucanase I fromTrichoderma virideHK-75. Bioscience, Biotechnology and Biochemistry, 2002, 66, 110-116.	1.3	4

#	Article	IF	CITATIONS
37	Molecular breeding of Aspergillus kawachii overproducing cellulase and its application to brewing barley shochu. Journal of Bioscience and Bioengineering, 2002, 93, 382-387.	2.2	5