
Karah E Knope

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5119805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactivity of a Chloride Decorated, Mixed Valent Ce ^{III/IV} ₃₈ –Oxo Cluster. Inorganic Chemistry, 2022, 61, 193-205.	4.0	6
2	Th(IV) Bromide Complexes: A Homoleptic Aqua Ion and a Novel Th(H ₂ O) ₄ Br ₄ Structural Unit. Crystal Growth and Design, 2022, 22, 4375-4381.	3.0	2
3	Structural and spectroscopic characterization of an einsteinium complex. Nature, 2021, 590, 85-88.	27.8	25
4	Synthesis, Characterization, and Solid-State Structural Chemistry of Uranium(IV) Aliphatic Dicarboxylates. Crystal Growth and Design, 2021, 21, 2429-2444.	3.0	2
5	Impact of Noncovalent Interactions on the Structural Chemistry of Thorium(IV)-Aquo-Chloro Complexes. Inorganic Chemistry, 2021, 60, 6375-6390.	4.0	4
6	Structure–Property Relationships in Photoluminescent Bismuth Halide Organic Hybrid Materials. Inorganic Chemistry, 2021, 60, 9727-9744.	4.0	12
7	Advancing understanding of actinide(<scp>iii</scp>) (Ac, Am, Cm) aqueous complexation chemistry. Chemical Science, 2021, 12, 5638-5654.	7.4	8
8	Using molten salts to probe outer-coordination sphere effects on lanthanide(<scp>iii</scp>)/(<scp>ii</scp>) electron-transfer reactions. Dalton Transactions, 2021, 50, 15696-15710.	3.3	10
9	Harnessing Bismuth Coordination Chemistry to Achieve Bright, Long-Lived Organic Phosphorescence. Inorganic Chemistry, 2021, 60, 16840-16851.	4.0	15
10	Synthesis, structural characterization, and luminescence properties of heteroleptic bismuth-organic compounds. CrystEngComm, 2021, 23, 8183-8197.	2.6	6
11	Synthesis and photoluminescence of three bismuth(<scp>iii</scp>)-organic compounds bearing heterocyclic N-donor ligands. Dalton Transactions, 2020, 49, 11756-11771.	3.3	13
12	Excitation-Dependent Photoluminescence Color Tuning in Lanthanide-Organic Hybrid Materials. Inorganic Chemistry, 2020, 59, 7539-7552.	4.0	24
13	From Isolated Molecular Complexes to Extended Networks: Synthesis and Characterization of Thorium Furanmono―and Dicarboxylates. European Journal of Inorganic Chemistry, 2020, 2020, 3287-3295.	2.0	2
14	Mononuclear to Polynuclear U ^{IV} Structural Units: Effects of Reaction Conditions on Uâ€Furoate Phase Formation. Chemistry - A European Journal, 2020, 26, 5872-5886.	3.3	15
15	From Thorium to Plutonium: Trends in Actinide(IV) Chloride Structural Chemistry. Inorganic Chemistry, 2019, 58, 10578-10591.	4.0	17
16	Monomeric and Trimeric Thorium Chlorides Isolated from Acidic Aqueous Solution. Inorganic Chemistry, 2019, 58, 10871-10882.	4.0	12
17	Strong photoluminescence and sensing performance of nanosized Ca _{0.8} Ln _{0.1} Na _{0.1} WO ₄ (Ln = Sm,Eu) compounds obtained by the dry "top-down―grinding method. Dalton Transactions, 2019, 48, 12080-12087.	3.3	6
18	Template-free cyclic hexavanadate: Synthesis, characterization, solid-state structure, and solution-state dynamics. Polyhedron, 2019, 169, 266-277.	2.2	2

Karah E Knope

#	Article	IF	CITATIONS
19	Photoluminescence of Visible and NIRâ€Emitting Lanthanideâ€Doped Bismuthâ€Organic Materials. Chemistry - A European Journal, 2018, 24, 5630-5636.	3.3	16
20	Bismuth(<scp>iii</scp>)-thiophenedicarboxylates as host frameworks for lanthanide ions: synthesis, structural characterization, and photoluminescent behavior. Dalton Transactions, 2018, 47, 13419-13433.	3.3	13
21	Solution and Solid State Structural Chemistry of Th(IV) and U(IV) 4-Hydroxybenzoates. Inorganic Chemistry, 2018, 57, 7259-7269.	4.0	30
22	Structural Diversity of Bismuth(III) Thiophenemonocarboxylates Isolated from Aqueous Solutions. European Journal of Inorganic Chemistry, 2017, 2017, 1435-1445.	2.0	12
23	Synthesis, structure, and photoluminescent behaviour of molecular lanthanide–2-thiophenecarboxylate–2,2′:6′,2′′-terpyridine materials. CrystEngComm, 2017, 19, 5	53 66 -5312	2. ²⁴
24	Uranium(IV) Chloride Complexes: UCl ₆ ^{2–} and an Unprecedented U(H ₂ O) ₄ Cl ₄ Structural Unit. Inorganic Chemistry, 2017, 56, 9772-9780.	4.0	21
25	Synthesis and Characterization of an Isomorphous Lanthanide-Thiophenemonocarboxylate Series (Ln =) Tj ETQq1	1_0,7843 3.0	14 rgBT /O
26	A Comparison of Adsorption, Reduction, and Polymerization of the Plutonyl(VI) and Uranyl(VI) Ions from Solution onto the Muscovite Basal Plane. Langmuir, 2016, 32, 10473-10482.	3.5	8
27	Effects of the background electrolyte on Th(IV) sorption to muscovite mica. Geochimica Et Cosmochimica Acta, 2015, 165, 280-293.	3.9	11
28	Two Dihydroxo-Bridged Plutonium(IV) Nitrate Dimers and Their Relevance to Trends in Tetravalent Ion Hydrolysis and Condensation. Inorganic Chemistry, 2015, 54, 10192-10196.	4.0	18
29	Understanding the Ligand-Directed Assembly of a Hexanuclear ThIVMolecular Cluster in Aqueous Solution. European Journal of Inorganic Chemistry, 2013, 2013, 4159-4163.	2.0	50
30	Surface-Mediated Formation of Pu(IV) Nanoparticles at the Muscovite-Electrolyte Interface. Environmental Science & Technology, 2013, 47, 14178-14184.	10.0	27
31	Solution and Solid-State Structural Chemistry of Actinide Hydrates and Their Hydrolysis and Condensation Products. Chemical Reviews, 2013, 113, 944-994.	47.7	310
32	Plutonium(IV) Cluster with a Hexanuclear [Pu6(OH)4O4]12+ Core. Inorganic Chemistry, 2013, 52, 6770-6772.	4.0	74
33	Understanding the Role of Aqueous Solution Speciation and Its Application to the Directed Syntheses of Complex Oxidic Zr Chlorides and Sulfates. Journal of the American Chemical Society, 2013, 135, 14240-14248.	13.7	54
34	Thorium(IV)–Selenate Clusters Containing an Octanuclear Th(IV) Hydroxide/Oxide Core. Inorganic Chemistry, 2012, 51, 4239-4249.	4.0	63
35	Spectroscopic and Energetic Properties of Thorium(IV) Molecular Clusters with a Hexanuclear Core. Journal of Physical Chemistry A, 2012, 116, 6917-6926.	2.5	43
36	Investigation of in Situ Oxalate Formation from 2,3-Pyrazinedicarboxylate under Hydrothermal Conditions Using Nuclear Magnetic Resonance Spectroscopy. Inorganic Chemistry, 2012, 51, 3883-3890.	4.0	52

Karah E Knope

#	Article	IF	CITATIONS
37	Structure and luminescence of a 2-dimensional 2,3-pyridinedicarboxylate coordination polymer constructed from lanthanide(III) dimers. Inorganica Chimica Acta, 2012, 392, 46-51.	2.4	24
38	Uranyl Sensitization of Samarium(III) Luminescence in a Two-Dimensional Coordination Polymer. Inorganic Chemistry, 2012, 51, 201-206.	4.0	119
39	Uranyl triazolate formation via an in situ Huisgen 1,3-dipolar cycloaddition reaction. CrystEngComm, 2011, 13, 153-157.	2.6	23
40	Synthesis and Characterization of Thorium(IV) Sulfates. Inorganic Chemistry, 2011, 50, 8621-8629.	4.0	31
41	Thorium(IV) Molecular Clusters with a Hexanuclear Th Core. Inorganic Chemistry, 2011, 50, 9696-9704.	4.0	127
42	Chapter 18. Uranyl Phosphonates: A Structural Survey. , 2011, , 596-606.		0
43	Synthesis and Characterization of 1â€; 2â€; and 3â€Dimensional Bimetallic UO ₂ ²⁺ /Zn ²⁺ Phosphonoacetates. European Journal of Inorganic Chemistry, 2010, 2010, 1177-1185.	2.0	63
44	Room temperature assembly of a uranyl carboxyphosphonate: Synthesis, characterization and UO22+ hydrolysis. Inorganic Chemistry Communication, 2010, 13, 1040-1042.	3.9	33
45	Hydrothermal Synthesis of Disulfide-Containing Uranyl Compounds: In Situ Ligand Synthesis versus Direct Assembly. Crystal Growth and Design, 2010, 10, 1390-1398.	3.0	65
46	Homometallic UO22+ diphosphonates assembled under ambient and hydrothermal conditions. Dalton Transactions, 2010, 39, 8319.	3.3	26
47	Homometallic Uranium(VI) Phosphonoacetates Containing Interlayer Dipyridines. Inorganic Chemistry, 2009, 48, 6845-6851.	4.0	67
48	Hydrothermal chemistry of Th(IV) with aromatic dicarboxylates: New framework compounds and in situ ligand syntheses. Journal of Solid State Chemistry, 2008, 181, 373-381.	2.9	72
49	Structural Variation within Homometallic Uranium(VI) Carboxyphosphonates: In Situ Ligand Synthesis, Directed Assembly, Metalâ^'Ligand Coordination and Hydrogen Bonding. Inorganic Chemistry, 2008, 47, 7660-7672.	4.0	82
50	An Open-Framework Thorium Sulfate Hydrate with 11.5 Ã Voids. Inorganic Chemistry, 2008, 47, 9321-9326.	4.0	42
51	Hydrothermal Synthesis of a Novel Uranium Oxalate/Clycolate via In-Situ Ligand Formation. Inorganic Chemistry, 2007, 46, 6607-6612.	4.0	65
52	1,4-Diazoniabicyclo[2.2.2]octane dinitrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2955-o2955.	0.2	1