Michael Potente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5119022/publications.pdf

Version: 2024-02-01

49 papers

11,027 citations

35 h-index 48 g-index

50 all docs 50 docs citations

50 times ranked

16480 citing authors

#	Article	IF	CITATIONS
1	Locus-Conserved Circular RNA cZNF292 Controls Endothelial Cell Flow Responses. Circulation Research, 2022, 130, 67-79.	4.5	23
2	The blood–brain barrier—a metabolic ecosystem. EMBO Journal, 2022, 41, e111189.	7.8	5
3	A YAP/TAZ-TEAD signalling module links endothelial nutrient acquisition to angiogenic growth. Nature Metabolism, 2022, 4, 672-682.	11.9	20
4	Hydroxylation of the NOTCH1 intracellular domain regulates Notch signaling dynamics. Cell Death and Disease, 2022, 13, .	6.3	5
5	Arterialization requires the timely suppression of cell growth. Nature, 2021, 589, 437-441.	27.8	73
6	PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature, 2021, 594, 271-276.	27.8	103
7	Control of endothelial quiescence by FOXO-regulated metabolites. Nature Cell Biology, 2021, 23, 413-423.	10.3	56
8	Post-myocardial infarction heart failure dysregulates the bone vascular niche. Nature Communications, 2021, 12, 3964.	12.8	23
9	Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Reports, 2021, 36, 109352.	6.4	59
10	Endothelial Cells Don't Waste: Endothelial-Derived Lactate Boosts Muscle Regeneration. Developmental Cell, 2020, 54, 137-139.	7.0	2
11	YAP and TAZ protect against white adipocyte cell death during obesity. Nature Communications, 2020, 11, 5455.	12.8	34
12	Apelin signaling drives vascular endothelial cells toward a pro-angiogenic state. ELife, 2020, 9, .	6.0	67
13	Endothelial metabolism—more complex (III) than previously thought. Nature Metabolism, 2019, 1, 14-15.	11.9	6
14	Deubiquitinase USP10 regulates Notch signaling in the endothelium. Science, 2019, 364, 188-193.	12.6	70
15	Metabolic modulation regulates cardiac wall morphogenesis in zebrafish. ELife, 2019, 8, .	6.0	21
16	aPKC controls endothelial growth by modulating c-Myc via FoxO1 DNA-binding ability. Nature Communications, 2018, 9, 5357.	12.8	36
17	Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells. Nature Communications, 2018, 9, 4077.	12.8	55
18	YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. ELife, 2018, 7, .	6.0	186

#	Article	IF	Citations
19	Top-NOTCH Regulation of Cardiac Metabolism. Circulation, 2018, 137, 2609-2612.	1.6	O
20	FGF-dependent metabolic control of vascular development. Nature, 2017, 545, 224-228.	27.8	256
21	Vascular heterogeneity and specialization in development and disease. Nature Reviews Molecular Cell Biology, 2017, 18, 477-494.	37.0	425
22	The Link Between Angiogenesis and Endothelial Metabolism. Annual Review of Physiology, 2017, 79, 43-66.	13.1	257
23	New Q(ues) to keep blood vessels growing. EMBO Journal, 2017, 36, 2315-2317.	7.8	2
24	FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature, 2016, 529, 216-220.	27.8	438
25	Laminar Shear Stress Inhibits Endothelial Cell Metabolism via KLF2-Mediated Repression of PFKFB3. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 137-145.	2.4	213
26	Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. Journal of Cell Science, 2015, 128, 2236-2248.	2.0	156
27	PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nature Communications, 2015, 6, 7935.	12.8	86
28	The Polarity Protein Scrib Is Essential for Directed Endothelial Cell Migration. Circulation Research, 2013, 112, 924-934.	4.5	51
29	Regulation of angiogenesis by PI3K signaling networks. Experimental Cell Research, 2013, 319, 1348-1355.	2.6	94
30	PP2A regulatory subunit $\hat{\text{Bl}}$ controls endothelial contractility and vessel lumen integrity via regulation of HDAC7. EMBO Journal, 2013, 32, 2491-2503.	7.8	43
31	MicroRNA-34a regulates cardiac ageing and function. Nature, 2013, 495, 107-110.	27.8	717
32	FOXOs and Sirtuins in Vascular Growth, Maintenance, and Aging. Circulation Research, 2012, 110, 1238-1251.	4.5	138
33	Basic and Therapeutic Aspects of Angiogenesis. Cell, 2011, 146, 873-887.	28.9	2,263
34	Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature, 2011, 473, 234-238.	27.8	350
35	An Energy-Sensor Network Takes Center Stage During Endothelial Aging. Circulation Research, 2010, 106, 1316-1318.	4.5	12
36	SIRT1 $\hat{a} \in ``a metabolic sensor that controls blood vessel growth. Current Opinion in Pharmacology, 2010, 10, 139-145.$	3. 5	43

#	Article	IF	Citations
37	Nrarp Coordinates Endothelial Notch and Wnt Signaling to Control Vessel Density in Angiogenesis. Developmental Cell, 2009, 16, 70-82.	7.0	326
38	MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice. Science, 2009, 324, 1710-1713.	12.6	1,114
39	HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells. Blood, 2009, 113, 5669-5679.	1.4	141
40	Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nature Cell Biology, 2008, 10, 923-934.	10.3	538
41	NO Targets SIRT1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1577-1579.	2.4	27
42	Protein phosphatase 2A controls the activity of histone deacetylase 7 during T cell apoptosis and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4727-4732.	7.1	73
43	SIRT1 controls endothelial angiogenic functions during vascular growth. Genes and Development, 2007, 21, 2644-2658.	5.9	540
44	Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. Journal of Clinical Investigation, 2005, 115, 2382-2392.	8.2	440
45	Histone deacetylase activity is essential for the expression of <i>HoxA9</i> and for endothelial commitment of progenitor cells. Journal of Experimental Medicine, 2005, 201, 1825-1835.	8.5	161
46	FOXOâ€dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB Journal, 2005, 19, 974-976.	0.5	184
47	11,12-Epoxyeicosatrienoic Acid-induced Inhibition of FOXO Factors Promotes Endothelial Proliferation by Down-Regulating p27. Journal of Biological Chemistry, 2003, 278, 29619-29625.	3.4	152
48	Cytochrome P450 2C9-induced Endothelial Cell Proliferation Involves Induction of Mitogen-activated Protein (MAP) Kinase Phosphatase-1, Inhibition of the c-Jun N-terminal Kinase, and Up-regulation of Cyclin D1. Journal of Biological Chemistry, 2002, 277, 15671-15676.	3.4	105
49	Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature, 1999, 401, 493-497.	27.8	838