List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5118458/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bisphosphonate-Anchored PEGylation and Radiolabeling of Superparamagnetic Iron Oxide:<br>Long-Circulating Nanoparticles for <i>in Vivo</i> Multimodal (T1 MRI-SPECT) Imaging. ACS Nano, 2013,<br>7, 500-512.                         | 14.6 | 253       |
| 2  | Noninvasive Magnetic Resonance Imaging Evaluation of Endothelial Permeability in Murine<br>Atherosclerosis Using an Albumin-Binding Contrast Agent. Circulation, 2012, 126, 707-719.                                                 | 1.6  | 112       |
| 3  | Detection of Intracoronary Thrombus by Magnetic Resonance Imaging in Patients With Acute<br>Myocardial Infarction. Circulation, 2011, 124, 416-424.                                                                                  | 1.6  | 107       |
| 4  | Role of miR-195 in Aortic Aneurysmal Disease. Circulation Research, 2014, 115, 857-866.                                                                                                                                              | 4.5  | 93        |
| 5  | Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis, 2011, 215, 52-59.                                                                                | 0.8  | 83        |
| 6  | A robust rabbit model of human atherosclerosis and atherothrombosis. Journal of Lipid Research,<br>2009, 50, 787-797.                                                                                                                | 4.2  | 78        |
| 7  | Magnetic Resonance T <sub>1</sub> Relaxation Time of Venous Thrombus Is Determined by Iron<br>Processing and Predicts Susceptibility to Lysis. Circulation, 2013, 128, 729-736.                                                      | 1.6  | 74        |
| 8  | In vivo Detection of Vulnerable Atherosclerotic Plaque by MRI in a Rabbit Model. Circulation:<br>Cardiovascular Imaging, 2010, 3, 323-332.                                                                                           | 2.6  | 57        |
| 9  | Fibrin-Targeted Magnetic Resonance Imaging Allows In Vivo Quantification of Thrombus Fibrin<br>Content and Identifies Thrombi Amenable for Thrombolysis. Arteriosclerosis, Thrombosis, and<br>Vascular Biology, 2014, 34, 1193-1198. | 2.4  | 54        |
| 10 | Gd-containing conjugated polymer nanoparticles: bimodal nanoparticles for fluorescence and MRI<br>imaging. Nanoscale, 2014, 6, 8376-8386.                                                                                            | 5.6  | 48        |
| 11 | Protein kinase G oxidation is a major cause of injury during sepsis. Proceedings of the National<br>Academy of Sciences of the United States of America, 2013, 110, 9909-9913.                                                       | 7.1  | 47        |
| 12 | In Vivo Magnetization Transfer and Diffusion-Weighted Magnetic Resonance Imaging Detects<br>Thrombus Composition in a Mouse Model of Deep Vein Thrombosis. Circulation: Cardiovascular<br>Imaging, 2013, 6, 433-440.                 | 2.6  | 44        |
| 13 | Aspirinâ€induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of<br>netrinâ€1 thus inhibiting monocyte vascular infiltration. British Journal of Pharmacology, 2015, 172,<br>3548-3564.       | 5.4  | 39        |
| 14 | Regions of Low Endothelial Shear Stress Colocalize With Positive Vascular Remodeling and<br>Atherosclerotic Plaque Disruption. Circulation: Cardiovascular Imaging, 2013, 6, 302-310.                                                | 2.6  | 38        |
| 15 | The Relationship of Ectopic Lipid Accumulation to Cardiac and Vascular Function in Obesity and<br>Metabolic Syndrome. Obesity, 2010, 18, 1116-1121.                                                                                  | 3.0  | 35        |
| 16 | Simultaneous bright―and blackâ€blood wholeâ€heart MRI for noncontrast enhanced coronary lumen and<br>thrombus visualization. Magnetic Resonance in Medicine, 2018, 79, 1460-1472.                                                    | 3.0  | 33        |
| 17 | Flowâ€independent 3D wholeâ€heart vessel wall imaging using an interleaved T2â€preparation acquisition.<br>Magnetic Resonance in Medicine, 2013, 69, 150-157.                                                                        | 3.0  | 31        |
| 18 | Noninvasive MRI Monitoring of the Effect of Interventions on Endothelial Permeability in Murine<br>Atherosclerosis Using an Albuminâ€Binding Contrast Agent. Journal of the American Heart Association,<br>2013, 2. e000402.         | 3.7  | 31        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | PET Performance Evaluation of a Pre-Clinical SiPM-Based MR-Compatible PET Scanner. IEEE Transactions on Nuclear Science, 2015, 62, 784-790.                                                                                                         | 2.0 | 30        |
| 20 | Simultaneous Assessment of Cardiac Inflammation and Extracellular Matrix Remodeling After Myocardial Infarction. Circulation: Cardiovascular Imaging, 2018, 11, .                                                                                   | 2.6 | 30        |
| 21 | Vascular Remodeling and Plaque Vulnerability in a Rabbit Model of Atherosclerosis: Comparison of<br>Delayed-Enhancement MR Imaging with an Elastin-specific Contrast Agent and Unenhanced Black-Blood<br>MR Imaging. Radiology, 2014, 271, 390-399. | 7.3 | 29        |
| 22 | Identification of cholesteryl esters in human carotid atherosclerosis by ex vivo image-guided proton<br>MRS. Journal of Lipid Research, 2006, 47, 310-317.                                                                                          | 4.2 | 27        |
| 23 | Sandwich Immunoassay for Soluble Glycoprotein VI in Patients with Symptomatic Coronary Artery Disease. Clinical Chemistry, 2011, 57, 898-904.                                                                                                       | 3.2 | 26        |
| 24 | Molecular MRI of Atherosclerosis. Molecules, 2013, 18, 14042-14069.                                                                                                                                                                                 | 3.8 | 26        |
| 25 | Molecular imaging of myocardial infarction. Basic Research in Cardiology, 2014, 109, 397.                                                                                                                                                           | 5.9 | 26        |
| 26 | The influence of pericardial fat upon left ventricular function in obese females: evidence of a site-specific effect. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 37.                                                                   | 3.3 | 26        |
| 27 | Tropoelastin. Circulation: Cardiovascular Imaging, 2018, 11, .                                                                                                                                                                                      | 2.6 | 25        |
| 28 | Arterial stiffening is a heritable trait associated with arterial dilation but not wall thickening: a<br>longitudinal study in the twins UK cohort. European Heart Journal, 2018, 39, 2282-2288.                                                    | 2.2 | 24        |
| 29 | Increased Vascular Permeability Measured With an Albumin-Binding Magnetic Resonance Contrast<br>Agent Is a Surrogate Marker of Rupture-Prone Atherosclerotic Plaque. Circulation: Cardiovascular<br>Imaging, 2016, 9, .                             | 2.6 | 22        |
| 30 | PET/CT and MR imaging biomarker of lipid-rich plaques using [64Cu]-labeled scavenger receptor (CD68-Fc). International Journal of Cardiology, 2014, 177, 287-291.                                                                                   | 1.7 | 21        |
| 31 | Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.<br>Nanotheranostics, 2020, 4, 184-194.                                                                                                                            | 5.2 | 20        |
| 32 | Identification of High-Risk Plaques by MRI and Fluorescence Imaging in a Rabbit Model of Atherothrombosis. PLoS ONE, 2015, 10, e0139833.                                                                                                            | 2.5 | 19        |
| 33 | Abnormal Myocardial Perfusion in Kawasaki Disease Convalescence. JACC: Cardiovascular Imaging, 2015, 8, 106-108.                                                                                                                                    | 5.3 | 18        |
| 34 | Positron Emission Tomography/Computed Tomographic and Magnetic Resonance Imaging in a Murine<br>Model of Progressive Atherosclerosis Using <sup>64</sup> Cu-Labeled Glycoprotein VI-Fc.<br>Circulation: Cardiovascular Imaging, 2013, 6, 957-964.   | 2.6 | 17        |
| 35 | Assessment of inflammation with a very small ironâ€oxide particle in a murine model of reperfused myocardial infarction. Journal of Magnetic Resonance Imaging, 2014, 39, 598-608.                                                                  | 3.4 | 16        |
| 36 | Use of Computed Tomography and Magnetic Resonance Imaging in Central Venous Disease. Methodist<br>DeBakey Cardiovascular Journal, 2021, 14, 188.                                                                                                    | 1.0 | 16        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Detection of thrombus size and protein content by ex vivo magnetization transfer and diffusion weighted MRI. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 49.                                                           | 3.3 | 15        |
| 38 | MRI with gadofosveset: A potential marker for permeability in myocardial infarction. Atherosclerosis, 2018, 275, 400-408.                                                                                                          | 0.8 | 15        |
| 39 | Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model. Medical Physics, 2014, 41, 042303.                                   | 3.0 | 14        |
| 40 | Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial<br>experience and validation against microspheres. Journal of Cardiovascular Magnetic Resonance, 2013,<br>15, 62.              | 3.3 | 13        |
| 41 | Monitoring Vascular Permeability and Remodeling After Endothelial Injury in a Murine Model Using a<br>Magnetic Resonance Albumin-Binding Contrast Agent. Circulation: Cardiovascular Imaging, 2015, 8, .                           | 2.6 | 13        |
| 42 | Early inÂvivo discrimination of vulnerable atherosclerotic plaques that disrupt: A serial MRI study.<br>Atherosclerosis, 2016, 244, 101-107.                                                                                       | 0.8 | 13        |
| 43 | Sustained Focal Vascular Inflammation Accelerates Atherosclerosis in Remote Arteries.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2159-2170.                                                                  | 2.4 | 13        |
| 44 | Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on<br>in vivo cardiovascular biology. American Journal of Physiology - Heart and Circulatory Physiology,<br>2012, 303, H1397-H1410. | 3.2 | 12        |
| 45 | Contrast-enhanced magnetic resonance imaging for the detection of ruptured coronary plaques in patients with acute myocardial infarction. PLoS ONE, 2017, 12, e0188292.                                                            | 2.5 | 12        |
| 46 | Gadolinium and Platinum in Tandem: Real-time Multi-Modal Monitoring of Drug Delivery by MRI and<br>Fluorescence Imaging. Nanotheranostics, 2017, 1, 186-195.                                                                       | 5.2 | 11        |
| 47 | <sup>68</sup> Ga-Sienna+ for PET-MRI Guided Sentinel Lymph Node Biopsy: Synthesis and Preclinical<br>Evaluation in a Metastatic Breast Cancer Model. Nanotheranostics, 2019, 3, 255-265.                                           | 5.2 | 11        |
| 48 | Tropoelastin: an in vivo imaging marker of dysfunctional matrix turnover during abdominal aortic<br>dilation. Cardiovascular Research, 2020, 116, 995-1005.                                                                        | 3.8 | 10        |
| 49 | Rats Fed Diets with Different Energy Contribution from Fat Do Not Differ in Adiposity. Obesity Facts, 2014, 7, 302-310.                                                                                                            | 3.4 | 9         |
| 50 | Imaging the Extracellular Matrix in Prevalent Cardiovascular Diseases. Applied Sciences (Switzerland),<br>2020, 10, 4001.                                                                                                          | 2.5 | 4         |
| 51 | Contrast-free high-resolution 3D magnetization transfer imaging for simultaneous myocardial scar<br>and cardiac vein visualization. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020,<br>33, 627-640.          | 2.0 | 4         |
| 52 | Assessment of hepatic fatty acids during non-alcoholic steatohepatitis progression using magnetic resonance spectroscopy. Annals of Hepatology, 2021, 25, 100358.                                                                  | 1.5 | 3         |
| 53 | Atherosclerotic Plaque Imaging. , 2018, , 261-300.                                                                                                                                                                                 |     | 2         |
| 54 | Molecular Imaging in Ischemic Heart Disease. Current Cardiovascular Imaging Reports, 2019, 12, 31.                                                                                                                                 | 0.6 | 2         |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Imaging of Dysfunctional Elastogenesis in Atherosclerosis Using an Improved Gadolinium-Based<br>Tetrameric MRI Probe Targeted to Tropoelastin. Journal of Medicinal Chemistry, 2021, 64, 15250-15261. | 6.4 | 2         |
| 56 | Quantitative MRI of Endothelial Permeability and (Dys)function in Atherosclerosis. Journal of Visualized Experiments, 2021, , .                                                                       | 0.3 | 2         |
| 57 | Application of MRI to detect high-risk atherosclerotic plaque. Expert Review of Cardiovascular<br>Therapy, 2011, 9, 545-550.                                                                          | 1.5 | 1         |
| 58 | MRI of atherosclerosis: from mouse to man. Imaging in Medicine, 2012, 4, 41-58.                                                                                                                       | 0.0 | 1         |
| 59 | PET performance evaluation of a pre-clinical SiPM based MR-compatible PET scanner. , 2012, , .                                                                                                        |     | 1         |
| 60 | Current Development of Molecular Coronary Plaque Imaging using Magnetic Resonance Imaging towards Clinical Application. Current Cardiovascular Imaging Reports, 2014, 7, 1.                           | 0.6 | 1         |
| 61 | Stable and Vulnerable Atherosclerotic Plaques. , 2011, , 3-25.                                                                                                                                        |     | 0         |
| 62 | Atherosclerotic Plaque Imaging. Contemporary Cardiology, 2019, , 229-248.                                                                                                                             | 0.1 | 0         |
| 63 | Thrombosis and Embolism. , 2021, , 1225-1244.                                                                                                                                                         |     | 0         |
| 64 | Abstract 18706: Multi-Sequence Non-Contrast MRI Characterisation of Experimental Venous Thrombi<br>Predicts Susceptibility to Lysis and is Feasible in Man. Circulation, 2014, 130, .                 | 1.6 | 0         |