Steven L. Chown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/511701/publications.pdf

Version: 2024-02-01

316 papers 24,515 citations

74 h-index

9264

138 g-index

329 all docs $\begin{array}{c} 329 \\ \text{docs citations} \end{array}$

times ranked

329

18777 citing authors

#	Article	IF	CITATIONS
1	Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 739-745.	2.6	895
2	Heat freezes niche evolution. Ecology Letters, 2013, 16, 1206-1219.	6.4	708
3	Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 2005, 80, 45-72.	10.4	577
4	Body size variation in insects: a macroecological perspective. Biological Reviews, 2010, 85, 139-169.	10.4	534
5	Upper thermal limits in terrestrial ectotherms: how constrained are they?. Functional Ecology, 2013, 27, 934-949.	3.6	519
6	Physiological Diversity in Insects: Ecological and Evolutionary Contexts. Advances in Insect Physiology, 2006, 33, 50-152.	2.7	446
7	Climatic Predictors of Temperature Performance Curve Parameters in Ectotherms Imply Complex Responses to Climate Change. American Naturalist, 2011, 177, 738-751.	2.1	384
8	Critical thermal limits depend on methodological context. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2935-2943.	2.6	380
9	Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution, 2003, 18, 257-262.	8.7	370
10	Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 2011, 214, 3713-3725.	1.7	352
11	Indirect effects of invasive species removal devastate World Heritage Island. Journal of Applied Ecology, 2009, 46, 73-81.	4.0	350
12	What is conservation physiology? Perspectives on an increasingly integrated and essential science., 2013, 1, cot001-cot001.		350
13	Biodiversity Assessment and Conservation Strategies. Science, 1998, 279, 2106-2108.	12.6	300
14	Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biological Reviews, 1999, 74, 87-120.	10.4	300
15	Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.	2.1	298
16	Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 2011, 57, 1070-1084.	2.0	296
17	Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4938-4943.	7.1	292
18	Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 2017, 31, 558-567.	3.6	290

#	Article	IF	Citations
19	The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014, 84, 203-244.	5.4	286
20	Ecogeographical rules: elements of a synthesis. Journal of Biogeography, 2008, 35, 483-500.	3.0	284
21	The changing form of Antarctic biodiversity. Nature, 2015, 522, 431-438.	27.8	277
22	Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16994-16999.	7.1	276
23	Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Functional Ecology, 2009, 23, 133-140.	3.6	271
24	Vulnerability of South African animal taxa to climate change. Global Change Biology, 2002, 8, 679-693.	9.5	259
25	Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2531-2537.	2.6	259
26	Areas, cradles and museums: the latitudinal gradient in species richness. Trends in Ecology and Evolution, 2000, 15, 311-315.	8.7	240
27	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	4.5	231
28	Elevation and Climatic Tolerance: A Test Using Dung Beetles. Oikos, 1999, 86, 584.	2.7	222
29	Life at the front: history, ecology and change on southern ocean islands. Trends in Ecology and Evolution, 1999, 14, 472-477.	8.7	211
30	Biological invasions, climate change and genomics. Evolutionary Applications, 2015, 8, 23-46.	3.1	209
31	Physiological variation in insects: hierarchical levels and implications. Journal of Insect Physiology, 2001, 47, 649-660.	2.0	207
32	Response of African savanna ants to long-term fire regimes. Journal of Applied Ecology, 2004, 41, 630-642.	4.0	204
33	Conservation biogeography of the <scp>A</scp> ntarctic. Diversity and Distributions, 2012, 18, 726-741.	4.1	199
34	Macrophysiology for a changing world. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1469-1478.	2.6	194
35	Polar research: Six priorities for Antarctic science. Nature, 2014, 512, 23-25.	27.8	189
36	Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 2307-2331.	4.0	186

#	Article	IF	CITATIONS
37	Climatic variability and the evolution of insect freeze tolerance. Biological Reviews, 2003, 78, 181-195.	10.4	183
38	Scaling up the value of bioindicators. Trends in Ecology and Evolution, 1998, 13, 46-47.	8.7	171
39	Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis. PLoS ONE, 2014, 9, e105824.	2.5	167
40	Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography, 2003, 26, 445-455.	4.5	160
41	Discontinuous Gas Exchange in Insects: A Clarification of Hypotheses and Approaches. Physiological and Biochemical Zoology, 2006, 79, 333-343.	1.5	158
42	Tracking of marine predators to protect Southern Ocean ecosystems. Nature, 2020, 580, 87-92.	27.8	156
43	Upper thermal tolerance and oxygen limitation in terrestrial arthropods. Journal of Experimental Biology, 2004, 207, 2361-2370.	1.7	155
44	Lizard thermal trait variation at multiple scales: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 5-21.	1.5	154
45	Revisiting water loss in insects: a large scale view. Journal of Insect Physiology, 2001, 47, 1377-1388.	2.0	147
46	ENERGY, SPECIES RICHNESS, AND HUMAN POPULATION SIZE: CONSERVATION IMPLICATIONS AT A NATIONAL SCALE. , 2003, 13, 1233-1241.		146
47	Challenges to the Future Conservation of the Antarctic. Science, 2012, 337, 158-159.	12.6	146
48	Insect Rateâ€√emperature Relationships: Environmental Variation and the Metabolic Theory of Ecology. American Naturalist, 2009, 174, 819-835.	2.1	144
49	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	7.8	144
50	Why Rapoport's Rule Does Not Generalise. Oikos, 1999, 84, 309.	2.7	142
51	Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biological Journal of the Linnean Society, 2003, 78, 401-414.	1.6	137
52	Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends in Microbiology, 2011, 19, 540-548.	7.7	136
53	Geothermal activity helps life survive glacial cycles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5634-5639.	7.1	133
54	Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera,) Tj ETQq0 0 0 r 54, 114-127.	gBT /Overl	lock 10 Tf 50 131

54, 114-127.

#	Article	IF	CITATIONS
55	Hemispheric Asymmetries in Biodiversity—A Serious Matter for Ecology. PLoS Biology, 2004, 2, e406.	5.6	129
56	PHENOTYPIC PLASTICITY AND GEOGRAPHIC VARIATION IN THERMAL TOLERANCE AND WATER LOSS OF THE TSETSE GLOSSINA PALLIDIPES (DIPTERA: GLOSSINIDAE): IMPLICATIONS FOR DISTRIBUTION MODELLING. American Journal of Tropical Medicine and Hygiene, 2006, 74, 786-794.	1.4	126
57	Testing the Beneficial Acclimation Hypothesis and Its Alternatives for Locomotor Performance. American Naturalist, 2006, 168, 630-644.	2.1	117
58	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
59	Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). Journal of Insect Physiology, 1997, 43, 685-694.	2.0	112
60	Insect gas exchange patterns: a phylogenetic perspective. Journal of Experimental Biology, 2005, 208, 4495-4507.	1.7	110
61	The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). Journal of Experimental Biology, 2006, 209, 1064-1073.	1.7	105
62	Rates of species introduction to a remote oceanic island. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1091-1098.	2.6	103
63	Oxygen limitation and thermal tolerance in two terrestrial arthropod species. Journal of Experimental Biology, 2010, 213, 2209-2218.	1.7	101
64	Breaching the dispersal barrier to invasion: quantification and management. Ecological Applications, 2009, 19, 1944-1959.	3.8	99
65	Burning issues for conservation: A critique of faunal fire research in Southern Africa. Austral Ecology, 2003, 28, 384-395.	1.5	98
66	Evolutionary responses of discontinuous gas exchange in insects. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8357-8361.	7.1	92
67	Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: Indigenous and invasive species. Journal of Insect Physiology, 2007, 53, 113-125.	2.0	91
68	Antarctica's Protected Areas Are Inadequate, Unrepresentative, and at Risk. PLoS Biology, 2014, 12, e1001888.	5.6	88
69	A predicted niche shift corresponds with increased thermal resistance in an invasive mite, <i><scp>H</scp>alotydeus destructor</i> i>. Global Ecology and Biogeography, 2013, 22, 942-951.	5.8	87
70	Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasites and Vectors, 2013, 6, 104.	2.5	84
71	The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). Journal of Insect Physiology, 2005, 51, 1013-1023.	2.0	82
72	Antarctica and the strategic plan for biodiversity. PLoS Biology, 2017, 15, e2001656.	5.6	82

#	Article	IF	Citations
73	Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology, 2003, 49, 1049-1061.	2.0	81
74	Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1615-1627.	4.0	81
75	Species turnover, community boundaries and biogeographical composition of dung beetle assemblages across an altitudinal gradient in South Africa. Journal of Biogeography, 1999, 26, 1039-1055.	3.0	80
76	Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. Journal of Thermal Biology, 2011, 36, 479-485.	2.5	78
77	Repeatability of standard metabolic rate and gas exchange characteristics in a highly variable cockroach, Perisphaeria sp Journal of Experimental Biology, 2003, 206, 4565-4574.	1.7	77
78	Neutrality and the niche. Functional Ecology, 2005, 19, 1-6.	3.6	77
79	Beneficial acclimation and the Bogert effect. Ecology Letters, 2008, 11, 1027-1036.	6.4	77
80	Macrophysiology – progress and prospects. Functional Ecology, 2016, 30, 330-344.	3.6	77
81	Taxonomic homogenization and differentiation across Southern Ocean Islands differ among insects and vascular plants. Journal of Biogeography, 2010, 37, 217-228.	3.0	76
82	Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. Journal of Insect Physiology, 2013, 59, 1199-1211.	2.0	76
83	Barriers to globally invasive species are weakening across the Antarctic. Diversity and Distributions, 2017, 23, 982-996.	4.1	75
84	Title is missing!. Journal of Insect Conservation, 2001, 5, 27-36.	1.4	74
85	Nestedness of Southern Ocean island biotas: ecological perspectives on a biogeographical conundrum. Journal of Biogeography, 2004, 32, 155-168.	3.0	74
86	Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure. New Phytologist, 2013, 200, 241-250.	7.3	74
87	Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Journal of Insect Physiology, 2006, 52, 29-50.	2.0	73
88	The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). Journal of Insect Physiology, 2012, 58, 669-678.	2.0	73
89	Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biological Conservation, 1999, 88, 145-153.	4.1	72
90	Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Journal of Experimental Biology, 2005, 208, 869-879.	1.7	72

#	Article	IF	Citations
91	Physiological tolerances account for range limits and abundance structure in an invasive slug. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1459-1468.	2.6	72
92	Aliens in Antarctica: Assessing transfer of plant propagules by human visitors to reduce invasion risk. Biological Conservation, 2014, 171, 278-284.	4.1	72
93	The Midâ€Domain Effect Revisited. American Naturalist, 2005, 166, E144-E148.	2.1	70
94	Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. Journal of Insect Physiology, 2008, 54, 1008-1014.	2.0	70
95	Concerning invasive species: Reply to Brown and Sax. Austral Ecology, 2005, 30, 475-480.	1.5	68
96	Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	68
97	Monitoring biological invasion across the broader Antarctic: A baseline and indicator framework. Global Environmental Change, 2015, 32, 108-125.	7.8	67
98	Antarctic Entomology. Annual Review of Entomology, 2016, 61, 119-137.	11.8	67
99	Basal resistance enhances warming tolerance of alien over indigenous species across latitude. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 145-150.	7.1	67
100	Human impacts, energy availability and invasion across Southern Ocean Islands. Global Ecology and Biogeography, 2005, 14, 521-528.	5.8	66
101	Directional Evolution of the Slope of the Metabolic Rate–Temperature Relationship Is Correlated with Climate. Physiological and Biochemical Zoology, 2009, 82, 495-503.	1.5	64
102	Invasive species differ in key functional traits from native and nonâ€invasive alien plant species. Journal of Vegetation Science, 2019, 30, 994-1006.	2.2	64
103	Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). Journal of Insect Physiology, 1998, 44, 615-628.	2.0	63
104	Effects of a short-term climate change experiment on a sub-Antarctic keystone plant species. Global Change Biology, 2005, 11, 1628-1639.	9.5	63
105	Constraint and Competition in Assemblages: A Crossâ€Continental and Modeling Approach for Ants. American Naturalist, 2005, 165, 481-494.	2.1	63
106	Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biological Invasions, 2016, 18, 893-905.	2,4	63
107	Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae). Journal of Insect Physiology, 2001, 47, 95-109.	2.0	61
108	Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). Journal of Insect Physiology, 2003, 49, 45-52.	2.0	61

#	Article	IF	Citations
109	Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). Journal of Insect Physiology, 2009, 55, 336-343.	2.0	61
110	Taxonomic homogenization in ungulates: patterns and mechanisms at local and global scales. Journal of Biogeography, 2008, 35, 1962-1975.	3.0	60
111	Control of discontinuous gas exchange in <i>Samia cynthia</i> : effects of atmospheric oxygen, carbon dioxide and moisture. Journal of Experimental Biology, 2008, 211, 3272-3280.	1.7	60
112	Discontinuous gas exchange and the significance of respiratory water loss in scarabaeine beetles. Journal of Experimental Biology, 2003, 206, 3547-3556.	1.7	59
113	Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. Journal of Insect Physiology, 2006, 52, 693-700.	2.0	58
114	Reconsidering connectivity in the subâ€ <scp>A</scp> ntarctic. Biological Reviews, 2017, 92, 2164-2181.	10.4	58
115	Comparing thermal performance curves across traits: how consistent are they?. Journal of Experimental Biology, 2019, 222, .	1.7	58
116	World Heritage Status and Conservation of Southern Ocean Islands. Conservation Biology, 2001, 15, 550-557.	4.7	57
117	Phenotypic plasticity of gas exchange pattern and water loss in <i>Scarabaeus spretus</i> (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. Journal of Experimental Biology, 2010, 213, 2940-2949.	1.7	57
118	Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. Journal of Experimental Biology, 2004, 207, 1287-1294.	1.7	56
119	Intraspecific variation in lizard heat tolerance alters estimates of climate impact. Journal of Animal Ecology, 2019, 88, 247-257.	2.8	56
120	Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malaria Journal, 2012, 11, 226.	2.3	54
121	Sustained Antarctic Research: A 21st Century Imperative. One Earth, 2019, 1, 95-113.	6.8	54
122	The State and Future of Antarctic Environments in a Global Context. Annual Review of Environment and Resources, 2019, 44, 1-30.	13.4	54
123	Lack of coherence in the warming responses of marine crustaceans. Functional Ecology, 2014, 28, 895-903.	3.6	53
124	Human activities, propagule pressure and alien plants in the sub-Antarctic: Tests of generalities and evidence in support of management. Biological Conservation, 2013, 161, 18-27.	4.1	52
125	Temporal biodiversity change in transformed landscapes: a southern African perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3729-3742.	4.0	50
126	Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance., 2016, 4, cow053.		50

#	Article	lF	Citations
127	Herbivores, but not other insects, are scarce on alien plants. Austral Ecology, 2008, 33, 691-700.	1.5	49
128	Extrapolating population size from the occupancy–abundance relationship and the scaling pattern of occupancy. Ecological Applications, 2009, 19, 2038-2048.	3.8	49
129	The extent and impacts of ungulate translocations: South Africa in a global context. Biological Conservation, 2009, 142, 353-363.	4.1	48
130	Microclimate-based macrophysiology: implications for insects in a warming world. Current Opinion in Insect Science, 2015, 11, 84-89.	4.4	48
131	Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME Journal, 2021, 15, 3339-3356.	9.8	48
132	Expanding the Protected Area Network in Antarctica is Urgent and Readily Achievable. Conservation Letters, 2017, 10, 670-680.	5.7	47
133	A widespread thermodynamic effect, but maintenance of biological rates through space across life's major domains. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181775.	2.6	47
134	Species and community responses to short-term climate manipulation: Microarthropods in the sub-Antarctic. Austral Ecology, 2006, 31, 719-731.	1.5	46
135	Intraspecific Body Size Frequency Distributions of Insects. PLoS ONE, 2011, 6, e16606.	2.5	46
136	Climate change leads to increasing population density and impacts of a key island invader. Ecological Applications, 2018, 28, 212-224.	3.8	46
137	A comparative analysis of metabolic rate in six Scarabaeus species (Coleoptera: Scarabaeidae) from southern Africa: further caveats when inferring adaptation. Journal of Insect Physiology, 2000, 46, 553-562.	2.0	45
138	Quantifying the propagule load associated with the construction of an Antarctic research station. Antarctic Science, 2009, 21, 471-475.	0.9	45
139	Thermal physiology and urbanization: perspectives on exit, entry and transformation rules. Functional Ecology, 2015, 29, 902-912.	3.6	45
140	Discontinuous gas-exchange in centipedes and its convergent evolution in tracheated arthropods. Journal of Experimental Biology, 2002, 205, 1019-1029.	1.7	45
141	A Global Indicator for Biological Invasion. Conservation Biology, 2006, 20, 1635-1646.	4.7	44
142	Dissecting the plant–insect diversity relationship in the Cape. Molecular Phylogenetics and Evolution, 2009, 51, 94-99.	2.7	44
143	Comment on "Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches― Science, 2011, 332, 537-537.	12.6	44
144	Food for thought: Risks of non-native species transfer to the Antarctic region with fresh produce. Biological Conservation, 2011, 144, 1682-1689.	4.1	43

#	Article	IF	CITATIONS
145	Temperature-dependence of metabolic rate in Glossina morsitans morsitans (Diptera, Glossinidae) does not vary with gender, age, feeding, pregnancy or acclimation. Journal of Insect Physiology, 2005, 51, 861-870.	2.0	41
146	Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds. Global Ecology and Biogeography, 2010, 19, 98-110.	5.8	41
147	Following the Antarctic Circumpolar Current: patterns and processes in the biogeography of the limpet <i>Nacella</i> (Mollusca: Patellogastropoda) across the Southern Ocean. Journal of Biogeography, 2017, 44, 861-874.	3.0	41
148	Diatoms define a novel freshwater biogeography of the Antarctic. Ecography, 2021, 44, 548-560.	4.5	41
149	TESTING GENERALITIES IN THE SHAPE OF PATCH OCCUPANCY FREQUENCY DISTRIBUTIONS. Ecology, 2000, 81, 3163-3177.	3.2	38
150	Landscape Corridors: Possible Dangers?. Science, 2005, 310, 779-783.	12.6	38
151	Conservation of Southern Ocean Islands: invertebrates as exemplars. Journal of Insect Conservation, 2008, 12, 277-291.	1.4	38
152	Discontinuous gas exchange: new perspectives on evolutionary origins and ecological implications. Functional Ecology, 2011, 25, 1163-1168.	3.6	38
153	Hydrogen-Oxidizing Bacteria Are Abundant in Desert Soils and Strongly Stimulated by Hydration. MSystems, 2020, 5, .	3.8	38
154	Where do functional traits come from? The role of theory and models. Functional Ecology, 2021, 35, 1385-1396.	3.6	38
155	DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biology, 2008, 31, 651-655.	1.2	37
156	Creating novel food webs on introduced Australian acacias: indirect effects of galling biological control agents. Diversity and Distributions, 2011, 17, 958-967.	4.1	37
157	Spatial congruence of ecological transition at the regional scale in South Africa. Journal of Biogeography, 2004, 31, 843-854.	3.0	36
158	Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. Journal of Insect Physiology, 2007, 53, 455-462.	2.0	36
159	Management implications of the Macquarie Island trophic cascade revisited: a reply to Dowding <i>etAal.</i>	4.0	36
160	Phenotypic Plasticity of Locomotion Performance in the Seed HarvesterMessor capensis(Formicidae). Physiological and Biochemical Zoology, 2010, 83, 519-530.	1.5	36
161	An information-theoretic approach to evaluating the size and temperature dependence of metabolic rate. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3616-3621.	2.6	36
162	Indirect effects of habitat disturbance on invasion: nutritious litter from a grazing resistant plant favors alien over native Collembola. Ecology and Evolution, 2015, 5, 3462-3471.	1.9	36

#	Article	IF	Citations
163	People, species richness and human population growth. Global Ecology and Biogeography, 2006, 15, 625-636.	5.8	35
164	Rapid cold-hardening in a Karoo beetle, Afrinus sp Physiological Entomology, 2006, 31, 98-101.	1.5	35
165	The ecological biogeography of indigenous and introduced Antarctic springtails. Journal of Biogeography, 2019, 46, 1959-1973.	3.0	34
166	The effect of network size and sampling completeness in depauperate networks. Journal of Animal Ecology, 2019, 88, 211-222.	2.8	34
167	Sex-specific effects of mitochondrial haplotype on metabolic rate in <i>Drosophila melanogaster</i> support predictions of the Mother's Curse hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190178.	4.0	34
168	Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, <i>Schistocerca gregaria </i> Journal of Experimental Biology, 2012, 215, 2301-2307.	1.7	33
169	Soil Bacterial Communities Exhibit Strong Biogeographic Patterns at Fine Taxonomic Resolution. MSystems, 2020, 5, .	3.8	33
170	The Influence of Habitat and Altitude on Oxygen Uptake in Sub-Antarctic Weevils. Physiological Zoology, 1997, 70, 116-124.	1.5	33
171	Differential responses of thermal tolerance to acclimation in the sub-Antarctic rove beetle Halmaeusa atriceps. Physiological Entomology, 2005, 30, 195-204.	1.5	32
172	Determinants of terrestrial arthropod community composition at Cape Hallett, Antarctica. Antarctic Science, 2006, 18, 303-312.	0.9	32
173	Rate dynamics of ectotherm responses to thermal stress. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190174.	2.6	32
174	Antarctica's wilderness fails to capture continent's biodiversity. Nature, 2020, 583, 567-571.	27.8	32
175	Global patterns in species richness of pelagic seabirds: the Procellariiformes. Ecography, 1998, 21, 342-350.	4.5	31
176	Caterpillars benefit from thermal ecosystem engineering by wandering albatrosses on sub-Antarctic Marion Island. Biology Letters, 2006, 2, 51-54.	2.3	31
177	The effects of temperature, body mass and feeding on metabolic rate in the tsetse fly Glossina morsitans centralis. Physiological Entomology, 2007, 32, 175-180.	1.5	31
178	Realizing a synergy between research and education: how participation in ant monitoring helps raise biodiversity awareness in a resource-poor country. Journal of Insect Conservation, 2010, 14, 19-30.	1.4	31
179	Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands. Bothalia, 2017, 47, .	0.3	31
180	Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). Journal of Insect Physiology, 2004, 50, 637-645.	2.0	30

#	Article	lF	Citations
181	Endemicity biases nestedness metrics: a demonstration, explanation and solution. Ecography, 2006, 29, 347-356.	4.5	30
182	Waterâ€Balance Characteristics Respond to Changes in Body Size in Subantarctic Weevils. Physiological and Biochemical Zoology, 2003, 76, 634-643.	1.5	29
183	Trait means and reaction norms: the consequences of climate change/invasion interactions at the organism level. Evolutionary Ecology, 2010, 24, 1365-1380.	1.2	29
184	Desiccation tolerance as a function of age, sex, humidity and temperature in adults of the African malaria vectors Anopheles arabiensis Patton and Anopheles funestus Giles. Journal of Experimental Biology, 2014, 217, 3823-33.	1.7	29
185	Study design, rationale and methods of the Revitalising Informal Settlements and their Environments (RISE) study: a cluster randomised controlled trial to evaluate environmental and human health impacts of a water-sensitive intervention in informal settlements in Indonesia and Fiji. BMJ Open, 2021, 11. e042850.	1.9	29
186	Environmental factors, regional body size distributions and spatial variation in body size of local avian assemblages. Global Ecology and Biogeography, 2008, 17, 514-523.	5.8	28
187	Spatial scale and species identity influence the indigenous–alien diversity relationship in springtails. Ecology, 2011, 92, 1436-1447.	3.2	28
188	Spatial variation in structural damage to a keystone plant species in the sub-Antarctic: interactions between <i>Azorella selago</i> and invasive house mice. Antarctic Science, 2009, 21, 189-196.	0.9	27
189	Assemblage level variation in springtail lower lethal temperature: the role of invasive species on subâ€Antarctic Marion Island. Physiological Entomology, 2009, 34, 284-291.	1.5	26
190	Reactive oxygen species production and discontinuous gas exchange in insects. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 893-901.	2.6	26
191	A global analysis of elevational distribution of nonâ€native versus native plants. Journal of Biogeography, 2018, 45, 793-803.	3.0	26
192	Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands. Ecosphere, 2018, 9, e02358.	2.2	26
193	Increasing impacts by Antarctica $\hat{\epsilon}^{\text{M}}$ s most widespread invasive plant species as result of direct competition with native vascular plants. NeoBiota, 0, 51, 19-40.	1.0	26
194	Spatial variation and biogeography of sand forest avian assemblages in South Africa. Journal of Biogeography, 2000, 27, 1385-1401.	3.0	25
195	Modelling the winter distribution of a rare and endangered migrant, the Aquatic Warbler Acrocephalus paludicola. Ibis, 2007, 149, 701-714.	1.9	25
196	Using scale–area curves to quantify the distribution, abundance and range expansion potential of an invasive species. Diversity and Distributions, 2010, 16, 159-169.	4.1	25
197	Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet. Scientific Reports, 2015, 5, 11957.	3.3	25
198	Updated list of Collembola species currently recorded from South Africa. ZooKeys, 2015, 503, 55-88.	1.1	25

#	Article	IF	Citations
199	High resolution temperature data for ecological research and management on the Southern Ocean Islands. Scientific Data, 2018, 5, 180177.	5.3	25
200	Chronic heat stress in tropical urban informal settlements. IScience, 2021, 24, 103248.	4.1	25
201	Protected areas and regional avian species richness in South Africa. Biology Letters, 2006, 2, 184-188.	2.3	24
202	Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts. Evolutionary Ecology, 2010, 24, 601-616.	1.2	24
203	Climate change and elevational diversity capacity: do weedy species take up the slack?. Biology Letters, 2013, 9, 20120806.	2.3	24
204	A planetary health model for reducing exposure to faecal contamination in urban informal settlements: Baseline findings from Makassar, Indonesia. Environment International, 2021, 155, 106679.	10.0	24
205	Novel ecosystems support substantial avian assemblages: the case of invasive alien <i><scp>A</scp>cacia</i> thickets. Diversity and Distributions, 2014, 20, 34-45.	4.1	23
206	Upper thermal tolerance in aquatic insects. Current Opinion in Insect Science, 2015, 11, 78-83.	4.4	23
207	Cold tolerance of Littorinidae from southern Africa: intertidal snails are not constrained to freeze tolerance. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 617-624.	1.5	22
208	Metabolic rate, genetic and microclimate variation among springtail populations from sub-Antarctic Marion Island. Polar Biology, 2010, 33, 909-918.	1.2	22
209	Improving human and environmental health in urban informal settlements: the Revitalising Informal Settlements and their Environments (RISE) programme. Lancet Planetary Health, The, 2018, 2, S29.	11.4	22
210	Wind plays a major but not exclusive role in the prevalence of insect flight loss on remote islands. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202121.	2.6	22
211	Geographical bias in physiological data limits predictions of global change impacts. Functional Ecology, 2021, 35, 1572-1578.	3.6	22
212	Cuticular lipid mass and desiccation rates in Glossina pallidipes: interpopulation variation. Physiological Entomology, 2007, 32, 287-293.	1.5	21
213	Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae). Journal of Insect Physiology, 2010, 56, 513-521.	2.0	21
214	The Fynbos and Succulent Karoo Biomes Do Not Have Exceptional Local Ant Richness. PLoS ONE, 2012, 7, e31463.	2.5	21
215	A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae). Journal of Experimental Biology, 2014, 217, 3407-15.	1.7	21
216	Monitoring of diverse enteric pathogens across environmental and host reservoirs with TaqMan array cards and standard qPCR: a methodological comparison study. Lancet Planetary Health, The, 2021, 5, e297-e308.	11.4	21

#	Article	IF	Citations
217	Fifty million years of beetle evolution along the Antarctic Polar Front. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	21
218	Quantification of intra-regional propagule movements in the Antarctic. Antarctic Science, 2011, 23, 337-342.	0.9	20
219	Behavioural thermoregulation in the mopane worm (Lepidoptera). Journal of Thermal Biology, 1997, 22, 325-330.	2.5	19
220	Factory Flies Are Not Equal to Wild Flies. Science, 2007, 317, 1678-1678.	12.6	19
221	Genetic evidence confirms the origin of the house mouse on sub-Antarctic Marion Island. Polar Biology, 2007, 30, 327-332.	1.2	19
222	The Ecological Implications of Physiological Diversity in Dung Beetles. , 2011, , 200-219.		19
223	Phylogeny and colonization history of Pringlea antiscorbutica (Brassicaceae), an emblematic endemic from the South Indian Ocean Province. Molecular Phylogenetics and Evolution, 2012, 65, 748-756.	2.7	19
224	Antagonistic effects of biological invasion and temperature change on body size of island ectotherms. Diversity and Distributions, 2014, 20, 202-213.	4.1	19
225	Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting. , 2020, 8, coaa049.		19
226	Discontinuous gas exchange and water loss in the keratin beetle Omorgus radula: further evidence against the water conservation hypothesis?. Physiological Entomology, 2000, 25, 309-314.	1.5	19
227	Island-hopping invaders hitch a ride with tourists in South Georgia. Nature, 2000, 408, 637-637.	27.8	18
228	Haemolymph osmolality and thermal hysteresis activity in 17 species of arthropods from sub-Antarctic Marion Island. Polar Biology, 2002, 25, 928-933.	1.2	18
229	Regulated bradycardia in the pulmonate limpet Siphonaria (Gastropoda: Mollusca) during pollutant exposure: implication for biomarker studies. Comparative Biochemistry and Physiology Part A, Molecular & Discretive Physiology, 2004, 139, 309-316.	1.8	18
230	Body size patterns in Drosophila inhabiting a mesocosm: interactive effects of spatial variation in temperature and abundance. Oecologia, 2006, 149, 245-255.	2.0	18
231	Linking Molecular Physiology to Ecological Realities. Physiological and Biochemical Zoology, 2006, 79, 314-323.	1.5	18
232	Deconstructing a controversial local range expansion: conservation biogeography of the painted reed frog (<i>Hyperolius marmoratus</i>) in South Africa. Diversity and Distributions, 2008, 14, 400-411.	4.1	18
233	Changes in soil nematode populations indicate an annual life cycle at Cape Hallett, Antarctica. Pedobiologia, 2009, 52, 375-386.	1.2	18
234	Parameter landscapes unveil the bias in allometric prediction. Methods in Ecology and Evolution, 2010, 1, 69-74.	5.2	18

#	Article	IF	CITATIONS
235	Long-term ecosystem networks to record change: an international imperative. Antarctic Science, 2011, 23, 209-209.	0.9	18
236	Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry. Oecologia, 2011, 165, 225-235.	2.0	18
237	Evidence of Competition in a Herbivorous, Gall-Inhabiting Moth (Lepidoptera) Community. Oikos, 1997, 78, 107.	2.7	17
238	Antarctic Marine Biodiversity and Deep-Sea Hydrothermal Vents. PLoS Biology, 2012, 10, e1001232.	5.6	17
239	Phylogeography of a mite, Halozetes fulvus, reflects the landscape history of a young volcanic island in the sub-Antarctic. Biological Journal of the Linnean Society, 2012, 105, 131-145.	1.6	17
240	Litter decomposition in fynbos vegetation, South Africa. Soil Biology and Biochemistry, 2012, 47, 100-105.	8.8	17
241	Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting. Journal of Animal Ecology, 2020, 89, 2863-2875.	2.8	17
242	The acarine fauna of Heard Island. Polar Biology, 2002, 25, 688-695.	1.2	16
243	Springtail diversity in South Africa. South African Journal of Science, 2011, 107, .	0.7	16
244	Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. Journal of Insect Physiology, 2016, 85, 10-16.	2.0	16
245	Springtail phylogeography highlights biosecurity risks of repeated invasions and intraregional transfers among remote islands. Evolutionary Applications, 2020, 13, 960-973.	3.1	16
246	Options for reducing uncertainty in impact classification for alien species. Ecosphere, 2021, 12, e03461.	2.2	16
247	Bias, precision and accuracy in the estimation of cuticular and respiratory water loss: A case study from a highly variable cockroach, Perisphaeria sp Journal of Insect Physiology, 2008, 54, 169-179.	2.0	15
248	Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology. Journal of Experimental Biology, 2008, 211, 3139-3146.	1.7	15
249	Vagrant birds as a dispersal vector in transoceanic range expansion of vascular plants. Scientific Reports, 2019, 9, 4655.	3.3	15
250	Strangers in a strange land: Globally unusual thermal tolerance in Collembola from the Cape Floristic Region. Functional Ecology, 2020, 34, 1601-1612.	3.6	15
251	Scaling of gas exchange cycle frequency in insects. Biology Letters, 2008, 4, 127-129.	2.3	14
252	Metabolic and water loss rates of two cryptic species in the African velvet worm genus Opisthopatus (Onychophora). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 323-332.	1.5	14

#	Article	IF	CITATIONS
253	The microarthropods of sub-Antarctic Prince Edward Island: a quantitative assessment. Polar Biology, 2006, 30, 109-119.	1.2	13
254	The response of springtails to fire in the fynbos of the Western Cape, South Africa. Applied Soil Ecology, 2016, 108, 165-175.	4.3	13
255	Milnesium cfr. tardigradum (Milnesiidae, Apochela, Tardigrada): A Monitor of High Altitude Meiofauna on Sub-Antarctic Marion Island. Zoologischer Anzeiger, 2001, 240, 461-465.	0.9	12
256	Conservation implications of spatial genetic structure in two species of oribatid mites from the Antarctic Peninsula and the Scotia Arc. Antarctic Science, 2018, 30, 105-114.	0.9	12
257	Sub-critical limits are viable alternatives to critical thermal limits. Journal of Thermal Biology, 2021, 101, 103106.	2.5	12
258	Adequate sample sizes for improved accuracy of thermal trait estimates. Functional Ecology, 2021, 35, 2647-2662.	3.6	12
259	Solving the puzzle of <i>Pringleophaga</i> – threatened, keystone detritivores in the subâ€Antarctic. Insect Conservation and Diversity, 2014, 7, 308-313.	3.0	11
260	High spatial turnover in springtails of the Cape Floristic Region. Journal of Biogeography, 2020, 47, 1007-1018.	3.0	11
261	The spatial variability of rare and common species in a gall-inhabiting Lepidoptera community. Ecography, 1997, 20, 123-131.	4. 5	10
262	Temperature dependence of feeding behaviour in the mopane worm (Lepidoptera). Journal of Thermal Biology, 1999, 24, 241-244.	2.5	10
263	Animal Introductions to Southern Systems: Lessons for Ecology and for Policy. African Zoology, 2009, 44, 248-262.	0.4	10
264	Density, body size and sex ratio of an indigenous spider along an altitudinal gradient in the sub-Antarctic. Antarctic Science, 2012, 24, 15-22.	0.9	10
265	Contingent absences account for range limits but not the local abundance structure of an invasive springtail. Ecography, 2013, 36, 146-156.	4.5	10
266	Scale effects on the body size frequency distributions of <scp>A</scp> frican birds: patterns and potential mechanisms. Global Ecology and Biogeography, 2013, 22, 380-390.	5 . 8	10
267	Natural dispersal to sub-Antarctic Marion Island of two arthropod species. Polar Biology, 2014, 37, 781-787.	1.2	10
268	Urban warming favours C ₄ plants in temperate European cities. Journal of Ecology, 2016, 104, 1618-1626.	4.0	10
269	A decade of invertebrate colonization pressure on Scott Base in the Ross Sea region. Biological Invasions, 2018, 20, 2623-2633.	2.4	10
270	Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models. PLoS Computational Biology, 2020, 16, e1007853.	3.2	10

#	Article	IF	Citations
271	Parthenogenesis without costs in a grasshopper with hybrid origins. Science, 2022, 376, 1110-1114.	12.6	10
272	Effects of thermal acclimation on water loss rate and tolerance in the collembolan <i>Pogonognathellus flavescens</i>). Physiological Entomology, 2009, 34, 325-332.	1.5	9
273	A new specific plant host for the agave snout weevil, <i>Scyphophorus acupunctatus</i> Gyllenhal, 1838 (Coleoptera: Curculionidae) in South Africa: a destructive pest of species of <i>Agave</i> L. (Agavaceae). Bradleya, 2012, 30, 19-24.	0.3	9
274	The veiled ecological danger of rising sea levels. Nature Ecology and Evolution, 2017, 1, 1219-1221.	7.8	8
275	Species-energy relationships of indigenous and invasive species may arise in different ways – a demonstration using springtails. Scientific Reports, 2019, 9, 13799.	3.3	8
276	Improving speciesâ€based area protection in Antarctica. Conservation Biology, 2022, 36, .	4.7	8
277	Range expansion and increasing impact of the introduced wasp Aphidius matricariae Haliday on sub-Antarctic Marion Island. Biological Invasions, 2016, 18, 1235-1246.	2.4	7
278	Thermal preference and performance in a sub-Antarctic caterpillar: A test of the coadaptation hypothesis and its alternatives. Journal of Insect Physiology, 2017, 98, 108-116.	2.0	7
279	Gall wasp biocontrol of invasive <i>Acacia longifolia</i> : implications of strong bottomâ€up effects. Ecosphere, 2017, 8, e02043.	2.2	7
280	Human activity strongly influences genetic dynamics of the most widespread invasive plant in the subâ€Antarctic. Molecular Ecology, 2022, 31, 1649-1665.	3.9	7
281	Half a century of thermal tolerance studies in springtails (Collembola): A review of metrics, spatial and temporal trends. Current Research in Insect Science, 2022, 2, 100023.	1.7	7
282	Phenotypic plasticity in locomotor performance of a monophyletic group of weevils accords with the warmer is better hypothesis. Journal of Experimental Biology, 2019, 222, .	1.7	6
283	An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia, 2021, 195, 873-885.	2.0	6
284	Pre-freeze mortality in three species of aphids from sub-Antarctic Marion Island. Journal of Thermal Biology, 2010, 35, 255-262.	2.5	5
285	Species distribution modelling in lowâ€interaction environments: Insights from a terrestrial Antarctic system. Austral Ecology, 2013, 38, 279-288.	1.5	5
286	Chemosensory and thermal cue responses in the sub-Antarctic moth Pringleophaga marioni: Do caterpillars choose Wandering Albatross nest proxies?. Polar Biology, 2014, 37, 555-563.	1.2	5
287	Further support for thermal ecosystem engineering by wandering albatross. Antarctic Science, 2016, 28, 35-43.	0.9	5
288	Marine food webs destabilized. Science, 2020, 369, 770-771.	12.6	5

#	Article	IF	Citations
289	Constant and fluctuating temperature acclimations have similar effects on phenotypic plasticity in springtails. Journal of Thermal Biology, 2020, 93, 102690.	2.5	5
290	Range expansion of two invasive springtails on sub-Antarctic Macquarie Island. Polar Biology, 2017, 40, 2137-2142.	1.2	5
291	Seasonal, altitudinal and host plant-related variation in the abundance of aphids (Insecta, Hemiptera) on sub-Antarctic Marion Island. Polar Biology, 2011, 34, 513-520.	1.2	4
292	Testing Generalities in the Shape of Patch Occupancy Frequency Distributions. Ecology, 2000, 81, 3163.	3.2	4
293	Invasive species impacts on sub-Antarctic Collembola support the Antarctic climate-diversity-invasion hypothesis. Soil Biology and Biochemistry, 2022, 166, 108579.	8.8	4
294	Air-breathing by tightly-closed intertidal molluscs: benefits of small size to Laevilitorina caliginosa (Gould, 1846) and Lasaea consanguinea Smith, 1879 living at Husvik, South Georgia. Journal of Molluscan Studies, 1995, 61, 292-294.	1.2	3
295	South African research in the Southern Ocean: New opportunities but serious challenges. South African Journal of Science, 2013, 109, 4.	0.7	3
296	A multiâ€site method to capture turnover in rare to common interactions in bipartite species networks. Journal of Animal Ecology, 2022, 91, 404-416.	2.8	3
297	Reply from S.L. Chown and K.J. Gaston. Trends in Ecology and Evolution, 2000, 15, 514-515.	8.7	2
298	The detection of spatial structure in populations and communities: An empirical case study. Ecoscience, 2009, 16, 95-110.	1.4	2
299	Unpredictable change in Antarctic terrestrial systems: a consequence of science and policy priorities?. Antarctic Science, 2009, 21, 315.	0.9	2
300	Biotic interactions modify the effects of oxygen on insect gigantism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10745-10746.	7.1	2
301	The abundance structure of Azorella selago Hook. f. on sub-Antarctic Marion Island: testing the peak and tail hypothesis. Polar Biology, 2015, 38, 1881-1890.	1.2	2
302	Tsunami debris spells trouble. Science, 2017, 357, 1356-1356.	12.6	2
303	Using nearâ€ground leaf temperatures alters the projected climate change impacts on the historical range of a floristic biodiversity hotspot. Diversity and Distributions, 0, , .	4.1	2
304	South Africa: big science should stay on the agenda. Nature, 2010, 464, 30-30.	27.8	1
305	Ecophysiological forecasting for environmental change adaptation. Functional Ecology, 2013, 27, 930-933.	3.6	1
306	Marine hyadesiid mites from Gough Island. Hydrobiologia, 2003, 495, 119-126.	2.0	0

#	Article	IF	CITATIONS
307	A missing ingredient - more active participation by younger scientists. Antarctic Science, 2004, 16, 97-97.	0.9	O
308	Plenary Lecture: L3. LINKING MOLECULAR MECHANISMS TO POPULATION DYNAMICS: CHALLENGES FOR EVOLUTIONARY PHYSIOLOGISTS. Comparative Biochemistry and Physiology Part A, Molecular & Entergrative Physiology, 2007, 148, S2.	1.8	0
309	Discontinuous gas exchange and water loss in the keratin beetle <i>Omorgus radula</i> : further evidence against the water conservation hypothesis?. Physiological Entomology, 2000, 25, 309-314.	1.5	0
310	Editorial overview: Global change biology: Insects in a hot, crowded and connected world. Current Opinion in Insect Science, 2015, 11, iv-vi.	4.4	0
311	Title is missing!. , 2020, 16, e1007853.		0
312	Title is missing!. , 2020, 16, e1007853.		0
313	Title is missing!. , 2020, 16, e1007853.		0
314	Title is missing!. , 2020, 16, e1007853.		0
315	Title is missing!. , 2020, 16, e1007853.		0
316	Title is missing!. , 2020, 16, e1007853.		0