
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5114453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkylverdazyls as a Source of Alkyl Radicals for Light-Triggered Cancer Cell Death. Molecular Pharmaceutics, 2022, 19, 354-357.	4.6	1
2	Neutrophil Elastase-Activatable Prodrugs Based on an Alkoxyamine Platform to Deliver Alkyl Radicals Cytotoxic to Tumor Cells. Journal of Medicinal Chemistry, 2022, 65, 9253-9266.	6.4	4
3	The chemical thermodynamics and diamagnetism of n-alkanes. Calculations up to n-C110H222 from quantum chemical computations and experimental values. Computational and Theoretical Chemistry, 2022, 1215, 113770.	2.5	0
4	Establishing plasmon contribution to chemical reactions: alkoxyamines as a thermal probe. Chemical Science, 2021, 12, 4154-4161.	7.4	12
5	Magnetic Resonance Imaging of Protease-Mediated Lung Tissue Inflammation and Injury. ACS Omega, 2021, 6, 15012-15016.	3.5	5
6	Design of a Targeting and Oxygen-Independent Platform to Improve Photodynamic Therapy: A Proof of Concept. ACS Applied Bio Materials, 2021, 4, 1330-1339.	4.6	11
7	Homolysis/mesolysis of alkoxyamines activated by chemical oxidation and photochemical-triggered radical reactions at room temperature. Organic Chemistry Frontiers, 2021, 8, 6561-6576.	4.5	6
8	Homooligopeptides. Variations of the calculated absolute free energies G/n in function of the number n of amino acids. Computational and Theoretical Chemistry, 2020, 1191, 113012.	2.5	1
9	Identification of chemical species created during γâ€irradiation of antioxidant used in polyethylene and polyethyleneâ€ <scp><i>co</i></scp> â€vinyl acetate multilayer film. Journal of Applied Polymer Science, 2020, 137, 49336.	2.6	8
10	Smart Alkoxyamines: A New Tool for Smart Applications. Accounts of Chemical Research, 2020, 53, 2828-2840.	15.6	16
11	An enzymatic acetal/hemiacetal conversion for the physiological temperature activation of the alkoxyamine C–ON bond homolysis. Organic Chemistry Frontiers, 2020, 7, 2916-2924.	4.5	10
12	Alkoxyamines Designed as Potential Drugs against Plasmodium and Schistosoma Parasites. Molecules, 2020, 25, 3838.	3.8	9
13	New Variants of Nitroxide Mediated Polymerization. Polymers, 2020, 12, 1481.	4.5	28
14	Kinetic investigation of thermal and photoinduced homolysis of alkylated verdazyls. Physical Chemistry Chemical Physics, 2020, 22, 21881-21887.	2.8	5
15	How intramolecular coordination bonding (ICB) controls the homolysis of the C–ON bond in alkoxyamines. RSC Advances, 2019, 9, 25776-25789.	3.6	6
16	Power Law Distribution Concerning Absolute Free Energies of Linear Sulfur Chains, Polythiazyls, Polyisoprenes, Linear <i>trans</i> -Polyenes, and Polyynes. Journal of Physical Chemistry A, 2019, 123, 1380-1388.	2.5	6
17	Shifting-Nitroxides to Investigate Enzymatic Hydrolysis of Fatty Acids by Lipases Using Electron Paramagnetic Resonance in Turbid Media. Analytical Chemistry, 2019, 91, 5504-5507.	6.5	6
18	Chemical modifications of imidazole-containing alkoxyamines increase C–ON bond homolysis rate: Effects on their cytotoxic properties in glioblastoma cells. Bioorganic and Medicinal Chemistry, 2019, 27, 1942-1951.	3.0	10

#	Article	IF	CITATIONS
19	Smart Control of Nitroxide-Mediated Polymerization Initiators' Reactivity by pH, Complexation with Metals, and Chemical Transformations. Materials, 2019, 12, 688.	2.9	18
20	Unprecedented plasmon-induced nitroxide-mediated polymerization (PI-NMP): a method for preparation of functional surfaces. Journal of Materials Chemistry A, 2019, 7, 12414-12419.	10.3	42
21	Enzymatic triggering of C–ON bond homolysis of alkoxyamines. Organic Chemistry Frontiers, 2019, 6, 3663-3672.	4.5	13
22	Selective On/Offâ€Nitroxides as Radical Probes to Investigate Nonâ€radical Enzymatic Activity by Electron Paramagnetic Resonance. Chemistry - A European Journal, 2018, 24, 7615-7619.	3.3	9
23	The effect of the oxophilic Tb(III) cation on C ON bond homolysis in alkoxyamines. Inorganic Chemistry Communication, 2018, 91, 5-7.	3.9	6
24	Ozone, chemical reactivity and biological functions. Tetrahedron, 2018, 74, 6221-6261.	1.9	39
25	Enthalpy of Combustion on <i>n</i> â€Alkanes. Quantum Chemical Calculations up to <i>n</i> ₆₀ H ₁₂₂ and Power Law Distributions. ChemistrySelect, 2018, 3, 9113-9120.	1.5	10
26	An elastase activity reporter for Electronic Paramagnetic Resonance (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI) as a line-shifting nitroxide. Free Radical Biology and Medicine, 2018, 126, 101-112.	2.9	10
27	Coordination-Initiated Nitroxide-Mediated Polymerization (CI-NMP). Australian Journal of Chemistry, 2018, 71, 334.	0.9	17
28	Cycloaddition of sulfonyl azides and cyanogen azide to enamines. Quantum-chemical calculations concerning the spontaneous rearrangement of the adduct into ring-contracted amidines. Tetrahedron Letters, 2017, 58, 945-948.	1.4	9
29	Hyperfine coupling constants of β-phosphorylated nitroxides: Subtle interplay between steric strain, hyperconjugation, and dipole-dipole interactions. Tetrahedron, 2017, 73, 3188-3201.	1.9	5
30	Theoretical investigations on the conversions of cyclic polysulfides to acyclic polysulfide diradicals and subsequent reactions of biological interest. Tetrahedron, 2017, 73, 3492-3496.	1.9	3
31	Normal, Leveled, and Enhanced Steric Effects in Alkoxyamines Carrying a β-Phosphorylated Nitroxyl Fragment. Journal of Organic Chemistry, 2017, 82, 5702-5709.	3.2	6
32	Zinc(II) Hexafluoroacetylacetonate Complexes of Alkoxyamines: NMR and Kinetic Investigations. First Step for a New Way to Prepare Hybrid Materials ChemistrySelect, 2017, 2, 3584-3593.	1.5	17
33	Dual-initiator alkoxyamines with an N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide moiety for preparation of block co-polymers. RSC Advances, 2017, 7, 4993-5001.	3.6	2
34	How intramolecular hydrogen bonding (IHB) controls the C–ON bond homolysis in alkoxyamines. Organic and Biomolecular Chemistry, 2017, 15, 8425-8439.	2.8	20
35	C–ON bond homolysis of alkoxyamines: when too high polarity is detrimental. Organic and Biomolecular Chemistry, 2017, 15, 6167-6176.	2.8	14
36	C–ON bond homolysis in alkoxyamines. Part 12: the effect of the para-substituent in the 1-phenylethyl fragment. Organic and Biomolecular Chemistry, 2016, 14, 3574-3583.	2.8	14

#	Article	IF	CITATIONS
37	C–ON bond homolysis of alkoxyamines triggered by paramagnetic copper(<scp>ii</scp>) salts. Inorganic Chemistry Frontiers, 2016, 3, 1464-1472.	6.0	24
38	Trityl-based alkoxyamines as NMP controllers and spin-labels. Polymer Chemistry, 2016, 7, 6490-6499.	3.9	16
39	Studies of the dehydrodimerization of 2-butanone and 3-pentanone by lead dioxide. Tetrahedron Letters, 2016, 57, 5703-5706.	1.4	2
40	Intramolecular Hydrogen Bond Reverting the Solvent Effect on Phosphorus Hyperfine Coupling Constants of βâ€Phosphorylated Nitroxides. ChemPhysChem, 2016, 17, 3954-3963.	2.1	5
41	β-Phosphorus hyperfine coupling constant in nitroxides: 5. Solvent effect. RSC Advances, 2016, 6, 5653-5670.	3.6	5
42	Solvent effect in β-phosphorylated nitroxides. Part 4: detection of traces of water by electron paramagnetic resonance. Organic and Biomolecular Chemistry, 2016, 14, 1288-1292.	2.8	6
43	The β-phosphorus hyperfine coupling constant in nitroxides: 6. Solvent effects in non-cyclic nitroxides. Organic and Biomolecular Chemistry, 2016, 14, 3729-3743.	2.8	6
44	Computational and mechanistic studies of the acylation of cyclopropanes. Tetrahedron Letters, 2016, 57, 1743-1749.	1.4	1
45	C–ON Bond Homolysis of Alkoxyamines, Part 11: Activation of the Nitroxyl Fragment. Journal of Organic Chemistry, 2016, 81, 1981-1988.	3.2	10
46	Part 10: chemically triggered alkoxyamine C–ON bond homolysis in ionic liquid solvents. RSC Advances, 2015, 5, 76660-76665.	3.6	0
47	Computational Studies on Intramolecular Cycloadditions of Azidoenynes and Azidobutenenitriles to Give 6 <i>H</i> â€Pyrrolo[1,2â€ <i>c</i>][1,2,3]triazoles and 5 <i>H</i> â€Pyrrolo[1,2â€ <i>d</i>]tetrazoles. Helvetica Chimica Acta, 2015, 98, 1018-1027.	1.6	3
48	The β-phosphorus hyperfine coupling constant in nitroxide: part 3: titration of water by electron paramagnetic resonance. Organic and Biomolecular Chemistry, 2015, 13, 11393-11400.	2.8	4
49	Solvent Effect in β-Phosphorylated Nitroxides: Model Nitroxides. Applied Magnetic Resonance, 2015, 46, 1333-1342.	1.2	11
50	Energetics of the biosynthesis of prostanes from arachidonate. Tetrahedron, 2015, 71, 6920-6927.	1.9	1
51	Enzymatically Shifting Nitroxides for EPR Spectroscopy and Overhauserâ€Enhanced Magnetic Resonance Imaging. Angewandte Chemie - International Edition, 2015, 54, 13379-13384.	13.8	28
52	Degradation of Î ³ -irradiated polyethylene-ethylene vinyl alcohol-polyethylene multilayer films: An ESR study. Polymer Degradation and Stability, 2015, 122, 169-179.	5.8	31
53	Antibacterial properties of extracts of Ludwigia peploides subsp. montevidensis and Ludwigia grandiflora subsp. hexapetala during their cycle of development. Aquatic Botany, 2015, 121, 39-45.	1.6	6
54	Chemically triggered C–ON bond homolysis in alkoxyamines. Part 7. Remote polar effect. Journal of Physical Organic Chemistry, 2014, 27, 387-391.	1.9	6

#	Article	IF	CITATIONS
55	Labile alkoxyamines: past, present, and future. Chemical Communications, 2014, 50, 7921-7928.	4.1	50
56	Energetics of the biosynthesis of cyclopentenones from unsaturated fatty acids. Tetrahedron, 2014, 70, 8606-8613.	1.9	3
57	Alkoxyamines: a new family of pro-drugs against cancer. Concept for theranostics. Organic and Biomolecular Chemistry, 2014, 12, 719-723.	2.8	39
58	Alkoxyamines: Toward a New Family of Theranostic Agents against Cancer. Molecular Pharmaceutics, 2014, 11, 2412-2419.	4.6	32
59	Calculated linear free energy relationships in the course of the Suzuki–Miyaura coupling reaction. Tetrahedron, 2014, 70, 2272-2279.	1.9	12
60	Revised Structure, Total Synthesis, and Absolute Configuration of Kopeolin and Kopeolone. Journal of Organic Chemistry, 2014, 79, 2268-2273.	3.2	3
61	Nazarov reagents and their use in organic synthesis. Tetrahedron, 2013, 69, 8325-8348.	1.9	39
62	Chemically Triggered C–ON Bond Homolysis in Alkoxyamines. 6. Effect of the Counteranion. Journal of Organic Chemistry, 2013, 78, 7754-7757.	3.2	18
63	Chemically Triggered C–ON Bond Homolysis of Alkoxyamines. 8. Quaternization and Steric Effects. Journal of Organic Chemistry, 2013, 78, 9914-9920.	3.2	13
64	Theoretical modelling of the epoxidation of vinylallenes to give cyclopentenones. Tetrahedron Letters, 2013, 54, 6607-6610.	1.4	3
65	Enantioselective Syntheses of the Proposed Structures of Kopeolin and Kopeolone. Chemistry - A European Journal, 2013, 19, 10632-10642.	3.3	6
66	Chemically triggered C–ON bond homolysis in alkoxyamines: regioselectivity and chemoselectivity. Organic and Biomolecular Chemistry, 2013, 11, 7738.	2.8	9
67	Synthesis and Biological Evaluation of Methylenecyclopropane Analogues of Nucleosides. Synthesis, 2013, 45, 2612-2618.	2.3	13
68	Chemically Triggered C–ON Bond Homolysis of Alkoxyamines. 5. Cybotactic Effect. Journal of Organic Chemistry, 2012, 77, 9634-9640.	3.2	23
69	Chemically triggered C–ON bond homolysis of alkoxyamines. Part 4: solvent effect. Polymer Chemistry, 2012, 3, 2901.	3.9	24
70	Hyperfine Coupling Constants of βâ€Phosphorylated Nitroxides: A Tool to Probe the Cybotactic Effect by Electron Paramagnetic Resonance. ChemPhysChem, 2012, 13, 3542-3548.	2.1	10
71	Preparation of both enantiomers of a synthon for novel nucleoside analogs by enzymatic desymmetrization of a meso-diol with a methylene cyclopropane skeleton. Tetrahedron Letters, 2011, 52, 1082-1085.	1.4	14
72	Stereocontrolled Synthesis and Biological Evaluation of Novel Carbocyclic Nucleosides Analogues of Neplanocin F and Abacavir. Synlett, 2011, 2011, 111-115.	1.8	1

#	Article	IF	CITATIONS
73	Synthesis of Methylene―and Alkylidenecyclopropane Derivatives. Advanced Synthesis and Catalysis, 2010, 352, 575-608.	4.3	94
74	Total Synthesis of (+)-Crocacin C Using Hidden Symmetry. Journal of Organic Chemistry, 2010, 75, 1354-1359.	3.2	35
75	Synthesis and Antiviral Evaluation of (-)-3′-Methylcarbovir, (-)-3′-Methylabacavir, and Modified Purine Analogues. Synthesis, 2009, 2009, 290-296.	2.3	0
76	Synthesis of (+)-striatene: confirmation of its stereostructure. Tetrahedron Letters, 2009, 50, 5723-5725.	1.4	7
77	Enantioselective Enzymatic Desymmetrization of Highly Functionalized Meso Tetrahydropyranyl Diols. Organic Letters, 2009, 11, 4950-4953.	4.6	23
78	Chemoenzymatic synthesis and antiviral evaluation of conformationally constrained and 3′-methyl-branched carbanucleosides using both enantiomers of the same building block. Bioorganic and Medicinal Chemistry, 2008, 16, 374-381.	3.0	4
79	Highly Efficient Stereocontrolled Synthesis of Danishefsky's Taxol CD Ring Key Intermediate. Journal of Organic Chemistry, 2008, 73, 6033-6036.	3.2	5
80	Stereoselective Synthesis of Novel Aristeromycin Analogues as Potential Antiviral Agents. Synthesis, 2008, 2008, 3253-3260.	2.3	1
81	Total Chemoenzymatic Synthesis of (-)-3′-Methylaristeromycin. Synlett, 2007, 2007, 1124-1126.	1.8	1
82	First Total Synthesis and Assignment of the Stereochemistry of Crispatenine. Journal of Organic Chemistry, 2007, 72, 3770-3775.	3.2	14
83	First Enantioselective Synthesis and Absolute Stereochemistry Assignment of New Monoterpene Aldehyde-Esters fromBupleurum gibraltaricum. European Journal of Organic Chemistry, 2007, 2007, 2802-2807.	2.4	4
84	Chemoenzymatic synthesis of novel adenosine carbanucleoside analogues containing a locked 3′-methyl-2′,3′-l̂²-oxirane-fused system. Tetrahedron, 2007, 63, 5050-5055.	1.9	4
85	Improved enantioselective synthesis of natural striatenic acid and its methyl ester. Tetrahedron Letters, 2006, 47, 3669-3671.	1.4	16
86	Conformationally Locked Carbocyclic Nucleosides: Synthesis of the 1-Methyl-6-oxabicyclo[3.1.0]hexane Scaffold. Synlett, 2006, 2006, 2215-2218.	1.8	0
87	Enantioconvergent Access to the Enantiomerically Pure Building Blocks (+)- or (-)-4-Hydroxy-3-methyl-2-cyclohexenone Using a Chemoenzymatic Process. Synlett, 2006, 2006, 0403-0406.	1.8	1
88	Straightforward enantioselective synthesis of (+)-ancistrofuran. Tetrahedron, 2005, 61, 9545-9549.	1.9	14
89	Enantioselective Synthesis of (+)-Ricciocarpin A Using an Auxiliary Hydroxyl Group and a Diastereofacial Selectivity Based Methodology. Synlett, 2005, 2005, 2104-2106.	1.8	0
90	Lipases-Promoted Enantioselective Syntheses of Monocyclic Natural Products. Mini-Reviews in Organic Chemistry, 2005, 2, 265-281.	1.3	7

#	Article	IF	CITATIONS
91	Chemoenzymatic Taxanes Approach Using Both Enantiomers of the Same Building Block. 2. Taxol CD Ring Unit. Journal of Organic Chemistry, 2005, 70, 3484-3489.	3.2	13
92	Lipase-Promoted Access to Phenolic Herbertane-Type Sesquiterpenes: (+)-1,14-Herbertenediol, (?)-?-Herbertenol, (?)-Herbertenediol and Their Enantiomers. European Journal of Organic Chemistry, 2004, 2004, 5092-5099.	2.4	12
93	Enantioselective synthesis of natural (â~')-tochuinyl acetate, (â~')-dihydrotochuinyl acetate and (+)-β-cuparenone using both enantiomers of the same building block. Tetrahedron, 2004, 60, 5907-5912.	1.9	17
94	Enantioselective Synthesis of 3-Methylcarbapentofuranose Derivatives, Based on a Chemoenzymatic Procedure. European Journal of Organic Chemistry, 2003, 2003, 92-98.	2.4	9
95	First enantioselective synthesis and determination of the absolute configuration of natural (+)-dehydro-β-monocyclonerolidol. Tetrahedron Letters, 2003, 44, 6463-6464.	1.4	8
96	Use of lipase-catalyzed kinetic resolution for the enantioselective approach toward sesquiterpenes containing quaternary centers: the cuparane family. Tetrahedron: Asymmetry, 2003, 14, 2413-2418.	1.8	18
97	First Enantioselective Synthesis and Absolute Stereochemistry Assignment of New Monocyclic Sesquiterpenes fromArtemisiachamaemelifolia. Journal of Organic Chemistry, 2003, 68, 5407-5410.	3.2	8
98	Enantioselective Taxanes Approach Using Both Enantiomers of the Same Building-Block. Part 1: Taxol®A-Ring Subunit. Synlett, 2002, 2002, 1261-1264.	1.8	1
99	A stereocontrolled approach towards highly oxygenated taxane C and CD-ring precursors. Tetrahedron Letters, 2002, 43, 2757-2760.	1.4	12
100	Enzyme-Assisted Enantioselective Synthesis of Natural (â^')-β-Necrodol and Its Enantiomer. Journal of Organic Chemistry, 2001, 66, 323-326.	3.2	14
101	First enantioselective total synthesis of both enantiomers of lancifolol. Correlation: absolute configuration/specific rotation. Tetrahedron Letters, 2001, 42, 6125-6128.	1.4	11
102	Enantioselective Synthesis and Determination of the Absolute Configuration of Natural (â^')-Elegansidiol. European Journal of Organic Chemistry, 2001, 2001, 2293-2296.	2.4	11
103	Straightforward Enantioselective Synthesis of Both Enantiomers of Karahana Lactone Using a Domino Ring-Closure Sequence. Tetrahedron, 2000, 56, 7477-7481.	1.9	28
104	Lipase-mediated kinetic resolution of allylic(hydroxymethyl)methylenecyclopentane building blocks. Tetrahedron: Asymmetry, 2000, 11, 1289-1294.	1.8	4
105	A Short and Efficient Enantiospecific Synthesis of (+)-(2R,6S)-cis-Î ³ -Ironeviaa Highly Diastereoselective Protonation. Journal of Organic Chemistry, 2000, 65, 3551-3554.	3.2	25
106	Enantiospecific total synthesis of both enantiomers of laurene by a chemical diastereoselection/lipase-catalyzed kinetic resolution sequence. Tetrahedron: Asymmetry, 1999, 10, 1927-1933.	1.8	14
107	Synthesis of Phyllanthurinolactone, the Leaf-Closing Factor ofPhyllanthus urinaria L., and Its Three Stereoisomers. European Journal of Organic Chemistry, 1998, 1998, 57-62.	2.4	24
108	The First Synthesis of Coniochaetones A and (±)-B: Two Benzopyranone Derivatives. Synlett, 1998, 1998, 259-260.	1.8	41

#	Article	IF	CITATIONS
109	Synthesis and absolute configuration of phyllanthurinolactone, the leaf-closing factor of a nyctinastic plant, Phyllanthus urinaria L Tetrahedron Letters, 1997, 38, 575-578.	1.4	17
110	Enantioselective Total Synthesis of (+)-(2R,6R)-trans-Î ³ -Irone. Journal of Organic Chemistry, 1996, 61, 6021-6023.	3.2	21
111	Chemo- and regioselectivity in the Lewis acid-induced reaction of sterically unhindered isocyclic allylsilanes with 3-butyn-2-one. Tetrahedron, 1996, 52, 6685-6698.	1.9	12
112	Znl2 Catalyzed [2+2] versus [3+2] cycloaddition of an allyltrimethylsilane with 3-butyn-2-one : Confirmation of a cyclobutene by-product formation. Tetrahedron Letters, 1994, 35, 3073-3076.	1.4	27
113	Regioselective catalysed H-ene reaction of allylsilanes with 3-butyn-2-one application to a new synthesis of (±)-Î3-ionone. Tetrahedron Letters, 1993, 34, 3417-3418.	1.4	19