
Olivier Cases

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5114177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cubilin, the intrinsic factor-vitamin B12 receptor. Vitamins and Hormones, 2022, 119, 65-119.	1.7	2
2	Pathogenesis of Enamel-Renal Syndrome Associated Gingival Fibromatosis: A Proteomic Approach. Frontiers in Endocrinology, 2021, 12, 752568.	3.5	2
3	Lack of FAM20A, Ectopic Gingival Mineralization and Chondro/Osteogenic Modifications in Enamel Renal Syndrome. Frontiers in Cell and Developmental Biology, 2020, 8, 605084.	3.7	9
4	Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease. Current Medicinal Chemistry, 2020, 27, 3123-3150.	2.4	18
5	Loss of Cubilin, the intrinsic factor-vitamin B12 receptor, impairs visceral endoderm endocytosis and endodermal patterning in the mouse. Scientific Reports, 2019, 9, 10168.	3.3	12
6	CORRELATIONS BETWEEN EXPERIMENTAL MYOPIA MODELS AND HUMAN PATHOLOGIC MYOPIA. Retina, 2019, 39, 621-635.	1.7	4
7	Impaired vitreous composition and retinal pigment epithelium function in the FoxG1::LRP2 myopic mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1242-1254.	3.8	19
8	Preliminary study of the safety and efficacy of medium-chain triglycerides for use as an intraocular tamponading agent in minipigs. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 1593-1604.	1.9	5
9	Inherited LRP2 dysfunction in human disease and animal models. Journal of Rare Diseases Research & Treatment, 2017, 2, 22-31.	1.1	4
10	Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia. PLoS ONE, 2015, 10, e0129518.	2.5	39
11	Vitamin B12 absorption: Mammalian physiology and acquired and inherited disorders. Biochimie, 2013, 95, 1002-1007.	2.6	135
12	Cubilin, a High Affinity Receptor for Fibroblast Growth Factor 8, Is Required for Cell Survival in the Developing Vertebrate Head. Journal of Biological Chemistry, 2013, 288, 16655-16670.	3.4	21
13	Detailed investigations of proximal tubular function in Imerslund-GrÃ s beck syndrome. BMC Medical Genetics, 2013, 14, 111.	2.1	31
14	Megalin mediates the influence of sonic hedgehog on oligodendrocyte precursor cell migration and proliferation during development. Glia, 2012, 60, 851-866.	4.9	44
15	IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death and Differentiation, 2008, 15, 1542-1552.	11.2	79
16	Developmental Cell Death Is Enhanced in the Cerebral Cortex of Mice Lacking the Brain Vesicular Monoamine Transporter. Journal of Neuroscience, 2007, 27, 1315-1324.	3.6	43
17	Forebrain-specific Expression of Monoamine Oxidase A Reduces Neurotransmitter Levels, Restores the Brain Structure, and Rescues Aggressive Behavior in Monoamine Oxidase A-deficient Mice. Journal of Biological Chemistry, 2007, 282, 115-123.	3.4	43
18	Embryonic depletion of serotonin affects cortical development. European Journal of Neuroscience, 2007, 26, 331-344.	2.6	138

OLIVIER CASES

#	Article	IF	CITATIONS
19	Expression of Cux-1 and Cux-2 in the developing somatosensory cortex of normal and barrel-defective mice. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 158-165.	2.0	47
20	Overlapping expression patterns of the multiligand endocytic receptors cubilin and megalin in the CNS, sensory organs and developing epithelia of the rodent embryo. Gene Expression Patterns, 2005, 6, 69-78.	0.8	63
21	Biochemical characterization of the mammalian Cux2 protein. Gene, 2005, 344, 273-285.	2.2	38
22	Development of the dopaminergic neurons in the rodent brainstem. Experimental Neurology, 2005, 191, S104-S112.	4.1	42
23	Developmental expression pattern of monoamine oxidases in sensory organs and neural crest derivatives. Journal of Comparative Neurology, 2003, 464, 392-403.	1.6	34
24	The developmental role of serotonin: news from mouse molecular genetics. Nature Reviews Neuroscience, 2003, 4, 1002-1012.	10.2	1,130
25	Effects of genetic depletion of monoamines on somatosensory cortical development. Neuroscience, 2002, 115, 753-764.	2.3	48
26	Interactions between TrkB Signaling and Serotonin Excess in the Developing Murine Somatosensory Cortex: A Role in Tangential and Radial Organization of Thalamocortical Axons. Journal of Neuroscience, 2002, 22, 4987-5000.	3.6	45
27	Activity-Dependent Presynaptic Effect of Serotonin 1B Receptors on the Somatosensory Thalamocortical Transmission in Neonatal Mice. Journal of Neuroscience, 2002, 22, 886-900.	3.6	111
28	Spatiotemporal expression patterns ofslitandrobogenes in the rat brain. Journal of Comparative Neurology, 2002, 442, 130-155.	1.6	233
29	Neuronal organization of the melaninâ€concentrating hormone system in primitive actinopterygians: Evolutionary changes leading to teleosts. Journal of Comparative Neurology, 2002, 442, 99-114.	1.6	49
30	Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. Journal of Comparative Neurology, 2002, 442, 331-347.	1.6	84
31	Protracted expression of serotonin transporter and altered thalamocortical projections in the barrelfield of hypothyroid rats. European Journal of Neuroscience, 2001, 14, 1968-1980.	2.6	40
32	Defects of Tyrosine Hydroxylase-Immunoreactive Neurons in the Brains of Mice Lacking the Transcription Factor Pax6. Journal of Neuroscience, 2000, 20, 6501-6516.	3.6	84
33	Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: Determination of a sensitive developmental period. , 1998, 393, 169-184.		128
34	Transient developmental expression of monoamine transporters in the rodent forebrain. Journal of Comparative Neurology, 1998, 401, 506-524.	1.6	196
35	Plasma Membrane Transporters of Serotonin, Dopamine, and Norepinephrine Mediate Serotonin Accumulation in Atypical Locations in the Developing Brain of Monoamine Oxidase A Knock-Outs. Journal of Neuroscience, 1998, 18, 6914-6927.	3.6	158
36	Lack of Barrels in the Somatosensory Cortex of Monoamine Oxidase A–Deficient Mice: Role of a Serotonin Excess during the Critical Period. Neuron, 1996, 16, 297-307.	8.1	493

OLIVIER CASES

#	Article	IF	CITATIONS
37	Transient Uptake and Storage of Serotonin in Developing Thalamic Neurons. Neuron, 1996, 17, 823-835.	8.1	318
38	Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA. Science, 1995, 268, 1763-1766.	12.6	1,188
39	<i>Response</i> : Aggression in Mice and Men?. Science, 1995, 270, 363-363.	12.6	1