James S Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological Forecasts: An Emerging Imperative. Science, 2001, 293, 657-660.	12.6	774
2	SEED DISPERSAL NEAR AND FAR: PATTERNS ACROSS TEMPERATE AND TROPICAL FORESTS. Ecology, 1999, 80, 1475-1494.	3.2	725
3	Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition, and Sampling. Quaternary Research, 1988, 30, 67-80.	1.7	650
4	Reid's Paradox of Rapid Plant Migration. BioScience, 1998, 48, 13-24.	4.9	646
5	Why environmental scientists are becoming Bayesians. Ecology Letters, 2004, 8, 2-14.	6.4	641
6	Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368, .	12.6	576
7	Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology, 2012, 18, 1042-1052.	9.5	519
8	MOLECULAR INDICATORS OF TREE MIGRATION CAPACITY UNDER RAPID CLIMATE CHANGE. Ecology, 2005, 86, 2088-2098.	3.2	502
9	STAGES AND SPATIAL SCALES OF RECRUITMENT LIMITATION IN SOUTHERN APPALACHIAN FORESTS. Ecological Monographs, 1998, 68, 213-235.	5.4	485
10	Effects of climate and atmospheric CO 2 partial pressure on the global distribution of C 4 grasses: present, past, and future. Oecologia, 1998, 114, 441-454.	2.0	468
11	The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Clobal Change Biology, 2016, 22, 2329-2352.	9.5	428
12	Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications, 2009, 19, 553-570.	3.8	423
13	Invasion by Extremes: Population Spread with Variation in Dispersal and Reproduction. American Naturalist, 2001, 157, 537-554.	2.1	363
14	Fire and Climate Change During the Last 750 Yr in Northwestern Minnesota. Ecological Monographs, 1990, 60, 135-159.	5.4	340
15	Individuals and the Variation Needed for High Species Diversity in Forest Trees. Science, 2010, 327, 1129-1132.	12.6	319
16	Understanding movement data and movement processes: current and emerging directions. Ecology Letters, 2008, 11, 1338-1350.	6.4	317
17	Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 2002, 417, 732-735.	27.8	292
18	POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES. Ecology, 2004, 85, 3140-3150.	3.2	286

#	Article	IF	CITATIONS
19	Effect of climate change on fire regimes in northwestern Minnesota. Nature, 1988, 334, 233-235.	27.8	260
20	Relationships between charcoal particles in air and sediments in west-central Siberia. Holocene, 1998, 8, 19-29.	1.7	245
21	Stratigraphic Charcoal Analysis on Petrographic Thin Sections: Application to Fire History in Northwestern Minnesota. Quaternary Research, 1988, 30, 81-91.	1.7	238
22	Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Canadian Journal of Forest Research, 2004, 34, 1642-1656.	1.7	225
23	ESTIMATING POPULATION SPREAD: WHAT CAN WE FORECAST AND HOW WELL?. Ecology, 2003, 84, 1979-1988.	3.2	222
24	Ecological forecasting and data assimilation in a data-rich era. , 2011, 21, 1429-1442.		215
25	SEEDLING SURVIVAL AND GROWTH OF THREE FOREST TREE SPECIES: THE ROLE OF SPATIAL HETEROGENEITY. Ecology, 2003, 84, 1849-1861.	3.2	209
26	Generalized joint attribute modeling for biodiversity analysis: medianâ€zero, multivariate, multifarious data. Ecological Monographs, 2017, 87, 34-56.	5.4	195
27	More than the sum of the parts: forest climate response from joint species distribution models. Ecological Applications, 2014, 24, 990-999.	3.8	189
28	Resolving the biodiversity paradox. Ecology Letters, 2007, 10, 647-659.	6.4	185
29	Local and Regional Sediment Charcoal Evidence for Fire Regimes in Presettlement North-Eastern North America. Journal of Ecology, 1996, 84, 365.	4.0	178
30	A future for models and data in environmental science. Trends in Ecology and Evolution, 2006, 21, 375-380.	8.7	175
31	A long-term study of tree seedling recruitment in southern Appalachian forests: the effects of canopy gaps and shrub understories. Canadian Journal of Forest Research, 2000, 30, 1617-1631.	1.7	174
32	The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. Journal of Ecology, 2002, 90, 604-615.	4.0	170
33	Stability of forest biodiversity. Nature, 2003, 423, 635-638.	27.8	170
34	Biological indices of soil quality: an ecosystem case study of their use. Forest Ecology and Management, 2000, 138, 357-368.	3.2	169
35	Rising CO2 Levels and the Fecundity of Forest Trees. Science, 2001, 292, 95-98.	12.6	169
36	Coordinated approaches to quantify longâ€ŧerm ecosystem dynamics in response to global change. Global Change Biology, 2011, 17, 843-854.	9.5	165

#	Article	IF	CITATIONS
37	Climate change vulnerability of forest biodiversity: climate and competition tracking of demographic rates. Global Change Biology, 2011, 17, 1834-1849.	9.5	164
38	PREDICTING BIODIVERSITY CHANGE: OUTSIDE THE CLIMATE ENVELOPE, BEYOND THE SPECIES–AREA CURVE. Ecology, 2006, 87, 1896-1906.	3.2	160
39	CHANGING THE GAP DYNAMICS PARADIGM: VEGETATIVE REGENERATION CONTROL ON FOREST RESPONSE TO DISTURBANCE. Ecological Monographs, 2008, 78, 331-347.	5.4	160
40	Particle-Size Evidence for Source Areas of Charcoal Accumulation in Late Holocene Sediments of Eastern North American Lakes. Quaternary Research, 1995, 43, 80-89.	1.7	158
41	UNCERTAINTY AND VARIABILITY IN DEMOGRAPHY AND POPULATION GROWTH: A HIERARCHICAL APPROACH. Ecology, 2003, 84, 1370-1381.	3.2	153
42	FECUNDITY OF TREES AND THE COLONIZATION–COMPETITION HYPOTHESIS. Ecological Monographs, 2004, 74, 415-442.	5.4	152
43	Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology, 2012, 93, 511-520.	3.2	148
44	INCORPORATING MULTIPLE SOURCES OF STOCHASTICITY INTO DYNAMIC POPULATION MODELS. Ecology, 2003, 84, 1395-1402.	3.2	142
45	Highâ€dimensional coexistence based on individual variation: a synthesis of evidence. Ecological Monographs, 2010, 80, 569-608.	5.4	141
46	Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9086-9089.	7.1	136
47	Beyond neutral science. Trends in Ecology and Evolution, 2009, 24, 8-15.	8.7	135
48	Individual-scale variation, species-scale differences: inference needed to understand diversity. Ecology Letters, 2011, 14, 1273-1287.	6.4	134
49	The Role of Fire During Climate Change in an Eastern Deciduous Forest at Devil's Bathtub, New York. Ecology, 1996, 77, 2148-2166.	3.2	133
50	Changes in Biomass, Aboveground Net Primary Production, and Peat Accumulation following Permafrost Thaw in the Boreal Peatlands of Manitoba, Canada. Ecosystems, 2001, 4, 461-478.	3.4	129
51	EXPLOITING TEMPORAL VARIABILITY TO UNDERSTAND TREE RECRUITMENT RESPONSE TO CLIMATE CHANGE. Ecological Monographs, 2007, 77, 163-177.	5.4	120
52	Multiyear droughtâ€induced morbidity preceding tree death in southeastern U.S. forests. Ecological Applications, 2016, 26, 17-23.	3.8	112
53	Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature, 2017, 550, 105-108.	27.8	106
54	Effects of Holocene Climate Change on the C 4 Grassland/Woodland Boundary in the Northern Plains, USA. Ecology, 2001, 82, 620.	3.2	96

#	Article	IF	CITATIONS
55	COEXISTENCE: HOW TO IDENTIFY TROPHIC TRADE-OFFS. Ecology, 2003, 84, 17-31.	3.2	95
56	Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches. Canadian Journal of Forest Research, 2000, 30, 156-167.	1.7	93
57	Ceographic and temporal variations in fire history in boreal ecosystems of Alaska. Journal of Geophysical Research, 2003, 108, FFR 8-1.	3.3	93
58	Dual impacts of climate change: forest migration and turnover through life history. Global Change Biology, 2014, 20, 251-264.	9.5	92
59	Disturbance and Tree Life History on the Shifting Mosaic Landscape. Ecology, 1991, 72, 1102-1118.	3.2	91
60	Estimating the mass flux of charcoal from sedimentary records: effects of particle size, morphology, and orientation. Holocene, 1996, 6, 129-144.	1.7	90
61	Modelling the biological significance of behavioural change in coastal bottlenose dolphins in response to disturbance. Functional Ecology, 2013, 27, 314-322.	3.6	89
62	Prevalence and strength of densityâ€dependent tree recruitment. Ecology, 2015, 96, 2319-2327.	3.2	85
63	HIERARCHICAL BAYES FOR STRUCTURED, VARIABLE POPULATIONS: FROM RECAPTURE DATA TO LIFE-HISTORY PREDICTION. Ecology, 2005, 86, 2232-2244.	3.2	83
64	Reconstructing historical ranges with fossil data at continental scales. Forest Ecology and Management, 2004, 197, 139-147.	3.2	82
65	Multidimensional tradeâ€offs in species responses to disturbance: implications for diversity in a subtropical forest. Ecology, 2012, 93, 191-205.	3.2	82
66	Competition-interaction landscapes for the joint response of forests to climate change. Global Change Biology, 2014, 20, 1979-1991.	9.5	81
67	Pathogen regulation of plant diversity via effective specialization. Trends in Ecology and Evolution, 2013, 28, 705-711.	8.7	80
68	Long-term Perspectives on Lagged Ecosystem Responses to Climate Change: Permafrost in Boreal Peatlands and the Grassland/Woodland Boundary. Ecosystems, 2000, 3, 534-544.	3.4	78
69	TREE GROWTH INFERENCE AND PREDICTION FROM DIAMETER CENSUSES AND RING WIDTHS. Ecological Applications, 2007, 17, 1942-1953.	3.8	78
70	The Development of a Tidal Marsh: Upland and Oceanic Influences. Ecological Monographs, 1985, 55, 189-217.	5.4	77
71	The coherence problem with the Unified Neutral Theory of Biodiversity. Trends in Ecology and Evolution, 2012, 27, 198-202.	8.7	77
72	Bayesian inference on ageâ€specific survival for censored and truncated data. Journal of Animal Ecology, 2012, 81, 139-149.	2.8	76

#	Article	IF	CITATIONS
73	On the Interpretations of Joint Modeling in Community Ecology. Trends in Ecology and Evolution, 2021, 36, 391-401.	8.7	75
74	Fecundity and Dispersal in Plant Populations: Implications for Structure and Diversity. American Naturalist, 1995, 146, 72-111.	2.1	72
75	Capturing diversity and interspecific variability in allometries: A hierarchical approach. Forest Ecology and Management, 2008, 256, 1939-1948.	3.2	71
76	Estimating seed and pollen movement in a monoecious plant: a hierarchical Bayesian approach integrating genetic and ecological data. Molecular Ecology, 2011, 20, 1248-1262.	3.9	71
77	Tree phenology responses to winter chilling, spring warming, at north and south range limits. Functional Ecology, 2014, 28, 1344-1355.	3.6	71
78	Tree growth prediction using size and exposed crown area. Canadian Journal of Forest Research, 2005, 35, 13-20.	1.7	69
79	IMPLICATIONS OF SEED BANKING FOR RECRUITMENT OF SOUTHERN APPALACHIAN WOODY SPECIES. Ecology, 2005, 86, 85-95.	3.2	64
80	LONG-TERM CO2ENRICHMENT OF A FOREST ECOSYSTEM: IMPLICATIONS FOR FOREST REGENERATION AND SUCCESSION. , 2007, 17, 1198-1212.		64
81	Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach. Oecologia, 2010, 163, 759-773.	2.0	64
82	Genetic evidence for hybridization in red oaks (<i>Quercus</i> sect. <i>Lobatae</i> , Fagaceae). American Journal of Botany, 2012, 99, 92-100.	1.7	64
83	The seasonal timing of warming that controls onset of the growing season. Global Change Biology, 2014, 20, 1136-1145.	9.5	63
84	Effects of dispersal, shrubs, and density-dependent mortality on seed and seedling distributions in temperate forests. Canadian Journal of Forest Research, 2003, 33, 783-795.	1.7	62
85	Disturbance and Population Structure on the Shifting Mosaic Landscape. Ecology, 1991, 72, 1119-1137.	3.2	61
86	Intra―and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes. Ecology, 2012, 93, 2061-2072.	3.2	59
87	Coastal Forest Tree Populations in a Changing Environment, Southeastern Long Island, New York. Ecological Monographs, 1986, 56, 259-277.	5.4	58
88	The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE. Tree Physiology, 2013, 33, 135-151.	3.1	54
89	Conservation Efforts May Increase Malaria Burden in the Brazilian Amazon. PLoS ONE, 2013, 8, e57519.	2.5	54
90	Survival of tree seedlings across space and time: estimates from long-term count data. Journal of Ecology, 2005, 93, 1177-1184.	4.0	53

#	Article	IF	CITATIONS
91	Integration of Ecological Levels: Individual Plant Growth, Population Mortality and Ecosystem Processes. Journal of Ecology, 1990, 78, 275.	4.0	51
92	Elevated CO2 and tree fecundity: the role of tree size, interannual variability, and population heterogeneity. Global Change Biology, 2006, 12, 822-833.	9.5	51
93	Why species tell more about traits than traits about species: predictive analysis. Ecology, 2016, 97, 1979-1993.	3.2	51
94	Testing Disturbance Theory with Long-Term Data: Alternative Life-History Solutions to the Distribution of Events. American Naturalist, 1996, 148, 976-996.	2.1	50
95	Estimating colonization potential of migrant tree species. Global Change Biology, 2009, 15, 1173-1188.	9.5	50
96	Greater seed production in elevated CO ₂ is not accompanied by reduced seed quality in <i>Pinus taeda</i> L Global Change Biology, 2010, 16, 1046-1056.	9.5	50
97	Using Hierarchical Bayes to Understand Movement, Health, and Survival in the Endangered North Atlantic Right Whale. PLoS ONE, 2013, 8, e64166.	2.5	49
98	EVALUATING THE SOURCES OF POTENTIAL MIGRANT SPECIES: IMPLICATIONS UNDER CLIMATE CHANGE. Ecological Applications, 2008, 18, 1664-1678.	3.8	48
99	Individual-scale inference to anticipate climate-change vulnerability of biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 236-246.	4.0	48
100	Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 2009, 25, 1-12.	1.1	47
101	Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environmental Microbiology, 2019, 21, 3862-3872.	3.8	46
102	Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 2021, 12, 1242.	12.8	46
103	Seed Dispersal near and Far: Patterns across Temperate and Tropical Forests. Ecology, 1999, 80, 1475.	3.2	45
104	Dynamism in the Barrierâ€Beach Vegetation of Great South Beach, New York. Ecological Monographs, 1986, 56, 97-126.	5.4	42
105	Estimating resource acquisition and atâ€sea body condition of a marine predator. Journal of Animal Ecology, 2013, 82, 1300-1315.	2.8	42
106	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
107	EFFECTS OF HOLOCENE CLIMATE CHANGE ON THE C4GRASSLAND/WOODLAND BOUNDARY IN THE NORTHERN PLAINS, USA. Ecology, 2001, 82, 620-636.	3.2	41
108	Genetic variation in germination, growth, and survivorship of red maple in response to subambient through elevated atmospheric CO2. Global Change Biology, 2004, 10, 233-247.	9.5	40

#	Article	IF	CITATIONS
109	Predicting population survival under future climate change: density dependence, drought and extraction in an insular bighorn sheep. Journal of Animal Ecology, 2009, 78, 666-673.	2.8	39
110	Between-Site Differences in the Scale of Dispersal and Gene Flow in Red Oak. PLoS ONE, 2012, 7, e36492.	2.5	39
111	The ACER pollen and charcoal database: aÂglobal resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 2017, 9, 679-695.	9.9	38
112	Climate implications of biomass burning since the 19th century in eastern North America. Global Change Biology, 1996, 2, 433-442.	9.5	37
113	Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. Ecological Monographs, 2019, 89, e01381.	5.4	37
114	Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sensing of Environment, 2018, 209, 446-455.	11.0	34
115	Landscape interactions among nitrogen mineralization, species composition, and long-term fire frequency. Biogeochemistry, 1990, 11, 1.	3.5	32
116	Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling. Journal of Hydrology, 2010, 394, 436-446.	5.4	30
117	Causes and consequences of unequal seedling production in forest trees: a case study in red oaks. Ecology, 2012, 93, 1082-1094.	3.2	30
118	Joint Species Distribution Modeling: Dimension Reduction Using Dirichlet Processes. Bayesian Analysis, 2017, 12, .	3.0	30
119	The emergent interactions that govern biodiversity change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17074-17083.	7.1	30
120	Does predation contribute to tree diversity?. Oecologia, 2005, 143, 458-469.	2.0	29
121	Hydraulic time constants for transpiration of loblolly pine at a free-air carbon dioxide enrichment site. Tree Physiology, 2013, 33, 123-134.	3.1	28
122	Inferential ecosystem models, from network data to prediction. , 2011, 21, 1523-1536.		27
123	North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
124	Understanding the continuous phenological development at daily time step with a Bayesian hierarchical space-time model: impacts of climate change and extreme weather events. Remote Sensing of Environment, 2020, 247, 111956.	11.0	26
125	Overcoming data sparseness and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian model. Canadian Journal of Forest Research, 2009, 39, 1677-1687.	1.7	25
126	Inference for Size Demography From Point Pattern Data Using Integral Projection Models. Journal of Agricultural, Biological, and Environmental Statistics, 2012, 17, 641-677.	1.4	25

#	Article	IF	CITATIONS
127	Density-independent mortality, density compensation, gap formation, and self-thinning in plant populations. Theoretical Population Biology, 1992, 42, 172-198.	1.1	23
128	Divergent reproductive allocation tradeâ€offs with canopy exposure across tree species in temperate forests. Ecosphere, 2016, 7, e01313.	2.2	22
129	Modeling spatially biased citizen science effort through the eBird database. Environmental and Ecological Statistics, 2021, 28, 609-630.	3.5	22
130	Age-Related Changes in the Nasopharyngeal Microbiome Are Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Symptoms Among Children, Adolescents, and Young Adults. Clinical Infectious Diseases, 2022, 75, e928-e937.	5.8	22
131	Striking the right balance in right whale conservation. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1399-1403.	1.4	21
132	Total C and N Pools and Fluxes Vary with Time, Soil Temperature, and Moisture Along an Elevation, Precipitation, and Vegetation Gradient in Southern Appalachian Forests. Ecosystems, 2018, 21, 1623-1638.	3.4	21
133	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
134	A Predictive Framework to Understand Forest Responses to Global Change. Annals of the New York Academy of Sciences, 2009, 1162, 221-236.	3.8	20
135	A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data. Tree Physiology, 2015, 35, 792-802.	3.1	20
136	Presettlement analogs for Quaternary fire regimes in eastern North America. Journal of Paleolimnology, 1996, 16, 79.	1.6	19
137	Uncertainty in Ecological Inference and Forecasting1. Ecology, 2003, 84, 1349-1350.	3.2	19
138	The benefits of seed banking for red maple (Acer rubrum): maximizing seedling recruitment. Canadian Journal of Forest Research, 2005, 35, 806-813.	1.7	19
139	Biases in the estimation of size-dependent mortality models: advantages of a semiparametric approach. Canadian Journal of Forest Research, 2009, 39, 1430-1443.	1.7	19
140	Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status. Ecology, 2018, 99, 607-620.	3.2	19
141	Inferring longâ€distance dispersal and topographic barriers during postâ€glacial colonization from the genetic structure of red maple (<i>Acer rubrum</i> L.) in New England. Journal of Biogeography, 2008, 35, 1665-1673.	3.0	18
142	The relative influences of host plant genotype and yearly abiotic variability in determining herbivore abundance. Oecologia, 2012, 168, 483-489.	2.0	17
143	The effects of deer herbivory and forest type on tree recruitment vary with plant growth stage. Forest Ecology and Management, 2013, 308, 90-100.	3.2	17
144	Stages and Spatial Scales of Recruitment Limitation in Southern Appalachian Forests. Ecological Monographs, 1998, 68, 213.	5.4	17

#	Article	IF	CITATIONS
145	Facing Short-Term Extrapolation with Long-Term Evidence: Holocene Fire in the North-Eastern US Forests. Journal of Ecology, 1997, 85, 377.	4.0	16
146	Seed predation and climate impacts on reproductive variation in temperate forests of the southeastern USA. Oecologia, 2016, 180, 1223-1234.	2.0	16
147	Statistical modeling of seedling mortality. Journal of Agricultural, Biological, and Environmental Statistics, 2002, 7, 21-41.	1.4	14
148	The kâ€ZIG: Flexible Modeling for Zeroâ€Inflated Counts. Biometrics, 2012, 68, 878-885.	1.4	14
149	Jointly modeling marine species to inform the effects of environmental change on an ecological community in the Northwest Atlantic. Scientific Reports, 2022, 12, 132.	3.3	14
150	Niche Shifts From Trees to Fecundity to Recruitment That Determine Species Response to Climate Change. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	14
151	Stochastic Modeling for Velocity of Climate Change. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20, 323-342.	1.4	12
152	The stability of forest biodiversity. Nature, 2004, 427, 696-697.	27.8	12
153	Dynamic Inverse Prediction and Sensitivity Analysis With High-Dimensional Responses: Application to Climate-Change Vulnerability of Biodiversity. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 376-404.	1.4	11
154	Scaling Integral Projection Models for Analyzing Size Demography. Statistical Science, 2013, 28, .	2.8	11
155	Forest drought as an emerging research priority. Global Change Biology, 2016, 22, 2317-2317.	9.5	11
156	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	6.4	11
157	Fishing gear entanglement threatens recovery of critically endangered North Atlantic right whales. Conservation Science and Practice, 2022, 4, .	2.0	11
158	A scalable algorithm for dispersing population. Journal of Intelligent Information Systems, 2007, 29, 39-61.	3.9	10
159	Application of a Full Hierarchical Bayesian Model in Assessing Streamflow Response to a Climate Change Scenario at the Coweeta Basin, NC, USA. Journal of Resources and Ecology, 2012, 3, 118-128.	0.4	10
160	Clustering Species With Residual Covariance Matrix in Joint Species Distribution Models. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	10
161	Enhanced Understanding of Infectious Diseases by Fusing Multiple Datasets: A Case Study on Malaria in the Western Brazilian Amazon Region. PLoS ONE, 2011, 6, e27462.	2.5	10
162	Response of hydrology to climate change in the southern Appalachian Mountains using Bayesian inference. Hydrological Processes, 2014, 28, 1616-1626.	2.6	9

#	Article	IF	CITATIONS
163	Low-intensity logging and hunting have long-term effects on seed dispersal but not fecundity in Afrotropical forests. AoB PLANTS, 2019, 11, ply074.	2.3	9
164	Evidence from Individual Inference for High-Dimensional Coexistence: Long-Term Experiments on Recruitment Response. PLoS ONE, 2012, 7, e30050.	2.5	9
165	Where Resourceâ€Acquisitive Species Are Located: The Role of Habitat Heterogeneity. Geophysical Research Letters, 2020, 47, e2020GL087626.	4.0	8
166	Inference in incidence, infection, and impact: co-infection of multiple hosts by multiple pathogens. Bayesian Analysis, 2009, 4, .	3.0	7
167	Model-Driven Dynamic Control of Embedded Wireless Sensor Networks. Lecture Notes in Computer Science, 2006, , 409-416.	1.3	7
168	A scalable simulator for forest dynamics. , 2004, , .		6
169	Improving the Modeling of Disease Data from the Government Surveillance System: A Case Study on Malaria in the Brazilian Amazon. PLoS Computational Biology, 2013, 9, e1003312.	3.2	6
170	Process modeling for soil moisture using sensor network data. Statistical Methodology, 2014, 17, 99-112.	0.5	6
171	Dynamics of soil CO ₂ efflux under varying atmospheric CO ₂ concentrations reveal dominance of slow processes. Global Change Biology, 2017, 23, 3501-3512.	9.5	5
172	Multi-year drought-induced morbidity preceding tree death in Southeastern US forests. , 0, , 150731093536001.		4
173	Introduction to drought and US forests: Impacts and potential management responses. Forest Ecology and Management, 2016, 380, 296-298.	3.2	4
174	Modeling change in forest biomass across the eastern US. Environmental and Ecological Statistics, 2016, 23, 23-41.	3.5	4
175	The past 20 years of ecology and evolution. Trends in Ecology and Evolution, 2006, 21, 287.	8.7	3
176	The next 20 years of ecology and evolution. Trends in Ecology and Evolution, 2006, 21, 354-355.	8.7	3
177	Symposium 23. Toward Ecological Forecasting. Bulletin of the Ecological Society of America, 2008, 89, 467-474.	0.2	3
178	Effects of Model Formulation on Estimates of Health in Individual Right Whales (Eubalaena glacialis). Advances in Experimental Medicine and Biology, 2016, 875, 977-985.	1.6	3
179	Joint Modeling of Climate Niches for Adult and Juvenile Trees. Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21, 111-130.	1.4	3
180	Forest-Tree Growth Rates and Probability of Gap Origin: A Comment. Ecology, 1991, 72, 1166-1169.	3.2	2

#	Article	IF	CITATIONS
181	BIOMASS AND TOXICITY RESPONSES OF POISON IVY (TOXICODENDRON RADICANS) TO ELEVATED ATMOSPHERIC CO ₂ : REPLY. Ecology, 2008, 89, 585-587.	3.2	2
182	Exploiting temporal coherence in forest dynamics simulation. , 2011, , .		1
183	The missing link: from island extinction to Neutral Theory (a reply to Halley and Iwasa). Trends in Ecology and Evolution, 2012, 27, 364.	8.7	1
184	SEEDLING SURVIVAL AND GROWTH OF THREE FOREST TREE SPECIES: THE ROLE OF SPATIAL HETEROGENEITY. , 2003, 84, 1849.		1
185		6.4	0
186	Elevated CO2and tree fecundity: the role of tree size, interannual variability, and population heterogeneity. Global Change Biology, 2007, .	9.5	0
187	Community Reorganization Response to Climate Change: Species Interactions, State-Space Modeling and Food Webs. , 2020, , .		0
188	Distinct Community-Wide Responses to Forecasted Climate Change in Afrotropical Forests. Frontiers in Ecology and Evolution, 2022, 9, .	2.2	0