
Isabelle Tardieux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The power of parasite collectives. Nature Physics, 2022, 18, 491-492.	16.7	0
2	The BCC7 Protein Contributes to the Toxoplasma Basal Pole by Interfacing between the MyoC Motor and the IMC Membrane Network. International Journal of Molecular Sciences, 2022, 23, 5995.	4.1	3
3	Parasitism as a lifestyle: Ultimate intimacy between Apicomplexan protozoans and metazoan hosts. Biology of the Cell, 2021, 113, 131-132.	2.0	1
4	A brain cyst load-associated antigen is a Toxoplasma gondii biomarker for serodetection of persistent parasites and chronic infection. BMC Biology, 2021, 19, 25.	3.8	8
5	The Leishmania donovani LDBPK_220120.1 Gene Encodes for an Atypical Dual Specificity Lipid-Like Phosphatase Expressed in Promastigotes and Amastigotes; Substrate Specificity, Intracellular Localizations, and Putative Role(s). Frontiers in Cellular and Infection Microbiology, 2021, 11, 591868.	3.9	0
6	Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite <i>Toxoplasma</i> . ACS Nano, 2020, 14, 7121-7139.	14.6	30
7	Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLoS Pathogens, 2020, 16, e1008106.	4.7	23
8	Francisella novicida and F. philomiragia biofilm features conditionning fitness in spring water and in presence of antibiotics. PLoS ONE, 2020, 15, e0228591.	2.5	15
9	Phenotyping Toxoplasma Invasive Skills by Fast Live Cell Imaging. Methods in Molecular Biology, 2020, 2071, 209-220.	0.9	1
10	Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration. ELife, 2020, 9, .	6.0	24
11	Intracellular protozoan parasites: living probes of the host cell surface molecular repertoire. Current Opinion in Microbiology, 2019, 52, 116-123.	5.1	1
12	The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2. Nature Microbiology, 2019, 4, 1208-1220.	13.3	79
13	Apicomplexan Fâ€actin is required for efficient nuclear entry during host cell invasion. EMBO Reports, 2019, 20, e48896.	4.5	22
14	Specific Targeting of Plant and Apicomplexa Parasite Tubulin through Differential Screening Using In Silico and Assay-Based Approaches. International Journal of Molecular Sciences, 2018, 19, 3085.	4.1	10
15	Toxoplasma Parasite Twisting Motion Mechanically Induces Host Cell Membrane Fission to Complete Invasion within a Protective Vacuole. Cell Host and Microbe, 2018, 24, 81-96.e5.	11.0	44
16	Characterization of a Toxoplasma effector uncovers an alternative GSK3/ \hat{l}^2 -catenin-regulatory pathway of inflammation. ELife, 2018, 7, .	6.0	64
17	Actin Nanobodies Uncover the Mystery of Actin Filament Dynamics in Toxoplasma gondii. Trends in Parasitology, 2017, 33, 579-581.	3.3	4
18	Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. ELife, 2017, 6, .	6.0	29

ISABELLE TARDIEUX

#	Article	IF	CITATIONS
19	<i>Toxoplasma gondii</i> TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ–mediated host defenses. Journal of Experimental Medicine, 2016, 213, 1779-1798.	8.5	173
20	Reassessing the mechanics of parasite motility and host-cell invasion. Journal of Cell Biology, 2016, 214, 507-515.	5.2	70
21	Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces. BMC Biology, 2016, 14, 97.	3.8	31
22	AMA1-Deficient Toxoplasma gondii Parasites Transiently Colonize Mice and Trigger an Innate Immune Response That Leads to Long-Lasting Protective Immunity. Infection and Immunity, 2015, 83, 2475-2486.	2.2	19
23	The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion. PLoS ONE, 2014, 9, e91819.	2.5	107
24	Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum. PLoS Pathogens, 2014, 10, e1004273.	4.7	65
25	The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force. BMC Biology, 2014, 12, 773.	3.8	35
26	<i>Toxoplasma</i> exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cellular Microbiology, 2014, 16, 334-343.	2.1	60
27	Protein Phosphatase 2C of Toxoplasma Gondii Interacts with Human SSRP1 and Negatively Regulates Cell Apoptosis. Biomedical and Environmental Sciences, 2014, 27, 883-93.	0.2	10
28	Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nature Communications, 2013, 4, 2552.	12.8	121
29	Spire-1 a novel contributor of invadosome and associated invasive properties. Journal of Cell Science, 2013, 127, 328-40.	2.0	26
30	A <i>Toxoplasma</i> dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. Journal of Experimental Medicine, 2013, 210, 2071-2086.	8.5	252
31	Toxofilin upregulates the host cortical actin cytoskeleton dynamics facilitating <i>Toxoplasma</i> invasion. Journal of Cell Science, 2012, 125, 4333-42.	2.0	64
32	Group B Streptococcus surface proteins as major determinants for meningeal tropism. Current Opinion in Microbiology, 2012, 15, 44-49.	5.1	49
33	Host cell invasion by apicomplexans: what do we know?. Trends in Parasitology, 2012, 28, 131-135.	3.3	15
34	Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa. Cell Host and Microbe, 2011, 10, 591-602.	11.0	105
35	Editorial overview. Current Opinion in Microbiology, 2011, 14, 412-413.	5.1	0
36	The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. Journal of Experimental Medicine, 2010, 207, 2313-2322.	8.5	240

ISABELLE TARDIEUX

#	Article	IF	CITATIONS
37	A Toxoplasma type 2C serine-threonine phosphatase is involved in parasite growth in the mammalian host cell. Microbes and Infection, 2009, 11, 935-945.	1.9	30
38	Host Cell Entry by Apicomplexa Parasites Requires Actin Polymerization in the Host Cell. Cell Host and Microbe, 2009, 5, 259-272.	11.0	131
39	Migration of Apicomplexa Across Biological Barriers: The <i>Toxoplasma</i> and <i>Plasmodium</i> Rides. Traffic, 2008, 9, 627-635.	2.7	35
40	Toxofilin from <i>Toxoplasma gondii</i> forms a ternary complex with an antiparallel actin dimer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16122-16127.	7.1	30
41	SET8-Mediated Methylations of Histone H4 Lysine 20 Mark Silent Heterochromatic Domains in Apicomplexan Genomes. Molecular and Cellular Biology, 2007, 27, 5711-5724.	2.3	69
42	The toxofilin–actin–PP2C complex of Toxoplasma: identification of interacting domains. Biochemical Journal, 2007, 401, 711-719.	3.7	17
43	CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood, 2006, 107, 309-316.	1.4	340
44	Actin Dynamics Is Controlled by a Casein Kinase II and Phosphatase 2C Interplay onToxoplasma gondiiToxofilin. Molecular Biology of the Cell, 2003, 14, 1900-1912.	2.1	71
45	A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion Microbes and Infection, 2002, 4, 271-278.	1.9	28
46	Toxofilin, a Novel Actin-binding Protein from <i>Toxoplasma gondii</i> , Sequesters Actin Monomers and Caps Actin Filaments. Molecular Biology of the Cell, 2000, 11, 355-368.	2.1	70
47	The use of nocodazole in cell cycle analysis and parasite purification from Theileria parva-infected B cells. Microbes and Infection, 1999, 1, 1181-1188.	1.9	19
48	Toxoplasma gondii motility and host cell invasiveness are drastically impaired by jasplakinolide, a cyclic peptide stabilizing F-actin. Microbes and Infection, 1999, 1, 653-662.	1.9	50
49	Actin-binding proteins of invasive malaria parasites and the regulation of actin polymerization by a complex of 32/34-kDa proteins associated with heat shock protein 70kDa. Molecular and Biochemical Parasitology, 1998, 93, 295-308.	1.1	35
50	APlasmodium falciparumnovel gene encoding a coronin-like protein which associates with actin filaments. FEBS Letters, 1998, 441, 251-256.	2.8	53
51	Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients Journal of Experimental Medicine, 1994, 179, 1017-1022.	8.5	203
52	Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell, 1992, 71, 1117-1130.	28.9	374
53	Oral susceptibility of <i>Aedes albopictus</i> to dengue type 2 virus: a study of infection kinetics, using the polymerase chain reaction for viral detection. Medical and Veterinary Entomology, 1992, 6, 311-317.	1.5	4
54	Analysis of Inheritance of Oral Susceptibility of Aedes aegypti (Diptera: Culicidae) to Dengue-2 Virus Using Isofemale Lines. Journal of Medical Entomology, 1991, 28, 518-521.	1.8	17

#	Article	IF	CITATIONS
55	Role of some epigenetic factors influencing the host suitability of <i>Myzus persicae</i> for the parasitoid <i>Aphidius colemani</i> . Entomologia Experimentalis Et Applicata, 1990, 54, 73-80.	1.4	4
56	Use of DNA amplification for rapid detection of dengue viruses in midgut cells of individual mosquitoes. Research in Virology, 1990, 141, 455-457.	0.7	8
57	Variation Among Strains of Aedes aegypti in Susceptibility to Oral Infection with Dengue Virus Type 2. American Journal of Tropical Medicine and Hygiene, 1990, 43, 308-313.	1.4	40
58	Induction of a thelytokous reproduction in theAphidius colemani(Hym., Aphidiidae) complex. Journal of Applied Entomology, 1988, 106, 58-61.	1.8	18