
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113169/publications.pdf Version: 2024-02-01

ANDERS RIÃORIUND

#	Article	IF	CITATIONS
1	Dopamine neuron systems in the brain: an update. Trends in Neurosciences, 2007, 30, 194-202.	8.6	1,414
2	Cell replacement therapies for central nervous system disorders. Nature Neuroscience, 2000, 3, 537-544.	14.8	897
3	TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proceedings of the United States of America, 2013, 110, E1817-26.	7.1	600
4	Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature, 1999, 399, A32-A39.	27.8	442
5	Learning Deficit in BDNF Mutant Mice. European Journal of Neuroscience, 1997, 9, 2581-2587.	2.6	418
6	Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Annals of Neurology, 1994, 35, 172-180.	5.3	412
7	Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Annals of Neurology, 1997, 42, 95-107.	5.3	331
8	Neural transplantation for the treatment of Parkinson's disease. Lancet Neurology, The, 2003, 2, 437-445.	10.2	322
9	Nurr1 Is Required for Maintenance of Maturing and Adult Midbrain Dopamine Neurons. Journal of Neuroscience, 2009, 29, 15923-15932.	3.6	320
10	Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature, 1990, 347, 556-558.	27.8	258
11	Long-term Clinical Outcome of Fetal Cell Transplantation for Parkinson Disease. JAMA Neurology, 2014, 71, 83.	9.0	257
12	Endogenous Release of Neuronal Serotonin and 5-Hydroxyindoleacetic Acid in the Caudate-Putamen of the Rat as Revealed by Intracerebral Dialysis Coupled to High-Performance Liquid Chromatography with Fluorimetric Detection. Journal of Neurochemistry, 1988, 51, 1422-1435.	3.9	237
13	Functional Activity of Substantia Nigra Grafts Reinnervating the Striatum: Neurotransmitter Metabolism and [14C]2-Deoxy-d-glucose Autoradiography. Journal of Neurochemistry, 1982, 38, 737-748.	3.9	235
14	Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6544-6549.	7.1	235
15	α-Synuclein–Induced Down-Regulation of Nurr1 Disrupts GDNF Signaling in Nigral Dopamine Neurons. Science Translational Medicine, 2012, 4, 163ra156.	12.4	221
16	Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson's disease after administration into the striatum or the lateral ventricle. European Journal of Neuroscience, 1999, 11, 1554-1566.	2.6	219
17	NURR1 in Parkinson disease—from pathogenesis to therapeutic potential. Nature Reviews Neurology, 2013, 9, 629-636.	10.1	206
18	Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. European Journal of Neuroscience, 2000, 12, 3871-3882.	2.6	182

#	Article	IF	CITATIONS
19	Modeling Parkinson's disease pathology by combination of fibril seeds and α-synuclein overexpression in the rat brain. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8284-E8293.	7.1	161
20	Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2360-2365.	7.1	143
21	Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson's disease: a dose-finding study. Brain, 2015, 138, 963-973.	7.6	140
22	Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson's disease. European Journal of Neuroscience, 2001, 13, 1589-1599.	2.6	115
23	Better cells for brain repair. Nature, 1993, 362, 414-415.	27.8	105
24	Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice: Trophic and tropic effects in a rodent model of Huntington's disease. , 1997, 387, 96-113.		96
25	Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons. Stem Cell Reports, 2015, 4, 975-983.	4.8	92
26	Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N -Methyl-D-Aspartate Receptor Subunit. Biological Psychiatry, 2016, 79, 402-414.	1.3	77
27	Self-repair in the brain. Nature, 2000, 405, 893-895.	27.8	73
28	hESC-Derived Dopaminergic Transplants Integrate into Basal Ganglia Circuitry in a Preclinical Model of Parkinson's Disease. Cell Reports, 2019, 28, 3462-3473.e5.	6.4	65
29	Prefrontal Corticostriatal Afferents Maintain Increased Enkephalin Gene Expression in the Dopamine-denervated Rat Striatum. European Journal of Neuroscience, 1994, 6, 1371-1383.	2.6	64
30	GDNF and Parkinson's Disease: Where Next? A Summary from a Recent Workshop. Journal of Parkinson's Disease, 2020, 10, 875-891.	2.8	63
31	The Amphetamine Induced Rotation Test: A Re-Assessment of Its Use as a Tool to Monitor Motor Impairment and Functional Recovery in Rodent Models of Parkinson's Disease. Journal of Parkinson's Disease, 2019, 9, 17-29.	2.8	60
32	Cell Replacement Strategies for Neurodegenerative Disorders. Novartis Foundation Symposium, 2000, 231, 7-20.	1.1	57
33	Cell Therapy for Parkinson's Disease: What Next?. Movement Disorders, 2013, 28, 110-115.	3.9	57
34	Are Stem Cell-Based Therapies for Parkinson's Disease Ready for the Clinic in 2016?. Journal of Parkinson's Disease, 2016, 6, 57-63.	2.8	57
35	Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiology of Disease, 2015, 79, 28-40.	4.4	56
36	GDNF is not required for catecholaminergic neuron survival in vivo. Nature Neuroscience, 2015, 18, 319-322.	14.8	53

#	Article	IF	CITATIONS
37	Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson's disease. Acta Neuropathologica, 2018, 136, 621-639.	7.7	53
38	Noradrenaline neuron degeneration contributes to motor impairments and development of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Experimental Neurology, 2014, 257, 25-38.	4.1	52
39	Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1946-E1955.	7.1	52
40	Nurr1 and Retinoid X Receptor Ligands Stimulate Ret Signaling in Dopamine Neurons and Can Alleviate α-Synuclein Disrupted Gene Expression. Journal of Neuroscience, 2015, 35, 14370-14385.	3.6	52
41	Ex VivoGene Transfer of Brain-derived Neurotrophic Factor to the Intact Rat Forebrain: Neurotrophic Effects on Cholinergic Neurons. European Journal of Neuroscience, 1996, 8, 727-735.	2.6	50
42	Targetâ€specific forebrain projections and appropriate synaptic inputs of hESCâ€derived dopamine neurons grafted to the midbrain of parkinsonian rats. Journal of Comparative Neurology, 2018, 526, 2133-2146.	1.6	50
43	BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to I-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Experimental Neurology, 2017, 297, 73-81.	4.1	48
44	Parkinson disease gene therapy moves toward the clinic. Nature Medicine, 2000, 6, 1207-1208.	30.7	44
45	The role of pallidal serotonergic function in Parkinson's disease dyskinesias: a positron emission tomography study. Neurobiology of Aging, 2015, 36, 1736-1742.	3.1	42
46	Impact of α-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized α-synuclein rat model of PD. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15209-15220.	7.1	40
47	Survival of expanded dopaminergic precursors is critical for clinical trials. Nature Neuroscience, 1998, 1, 537-537.	14.8	39
48	Cell Therapy for Parkinson's Disease: Problems and Prospects. Novartis Foundation Symposium, 2008, , 174-187.	1.1	34
49	The serotonergic system in L-DOPA-induced dyskinesia: pre-clinical evidence and clinical perspective. Journal of Neural Transmission, 2018, 125, 1195-1202.	2.8	31
50	Animal models for preclinical Parkinson's research: An update and critical appraisal. Progress in Brain Research, 2020, 252, 27-59.	1.4	30
51	Gene Therapy for Dopamine Replacement in Parkinson´s Disease. Science Translational Medicine, 2009, 1, 2ps2.	12.4	29
52	Breaking the brain-blood barrier. Nature, 1999, 397, 569-570.	27.8	26
53	Cyclosporin promotes neurorestoration and cell replacement therapy in pre-clinical models of Parkinson's disease. Acta Neuropathologica Communications, 2015, 3, 84.	5.2	26
54	Animal Models of Parkinson's Disease: Are They Useful or Not?. Journal of Parkinson's Disease, 2020, 10, 1335-1342.	2.8	22

#	Article	IF	CITATIONS
55	Extensive reinnervation of the hippocampus by embryonic basal forebrain cholinergic neurons grafted into the septum of neonatal rats with selective cholinergic lesions. Journal of Comparative Neurology, 1996, 373, 355-372.	1.6	21
56	Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease. Brain, 2019, 142, 2402-2416.	7.6	16
57	Acetylcholine revisited. Nature, 1995, 375, 446-446.	27.8	15
58	Injury induced câ€Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glialâ€cellâ€Jineâ€derived neurotrophic factor. European Journal of Neuroscience, 2001, 13, 1-14.	2.6	15
59	The anti-dyskinetic effect of dopamine receptor blockade is enhanced in parkinsonian rats following dopamine neuron transplantation. Neurobiology of Disease, 2014, 62, 233-240.	4.4	15
60	Cell therapy for Parkinson's disease: problems and prospects. Novartis Foundation Symposium, 2005, 265, 174-86; discussion 187, 204-211.	1.1	15
61	A question of making it work. Nature, 1994, 367, 112-113.	27.8	14
62	Neuronal Replacement as a Tool for Basal Ganglia Circuitry Repair: 40 Years in Perspective. Frontiers in Cellular Neuroscience, 2020, 14, 146.	3.7	14
63	Dopamine Cell Therapy: From Cell Replacement to Circuitry Repair. Journal of Parkinson's Disease, 2021, 11, S159-S165.	2.8	13
64	α-Synuclein induced toxicity in brain stem serotonin neurons mediated by an AAV vector driven by the tryptophan hydroxylase promoter. Scientific Reports, 2016, 6, 26285.	3.3	12
65	Mechanisms and use of neural transplants for brain repair. Progress in Brain Research, 2017, 230, 1-51.	1.4	11
66	From Skin to Brain: A Parkinson's Disease Patient Transplanted with His Own Cells. Cell Stem Cell, 2020, 27, 8-10.	11.1	11
67	BDNF Overexpression Increases Striatal D3 Receptor Level at Striatal Neurons and Exacerbates D1-Receptor Agonist-Induced Dyskinesia. Journal of Parkinson's Disease, 2020, 10, 1503-1514.	2.8	9
68	In uterogene transfer reveals survival effects of nerve growth factor on rat brain cholinergic neurones during development. European Journal of Neuroscience, 1998, 10, 263-271.	2.6	8
69	Basal Forebrain Grafts in the Hippocampus and Neocortex: Regulation of Acetylcholine Releasea. Annals of the New York Academy of Sciences, 1993, 695, 267-273.	3.8	7
70	Transsynaptic tracing and its emerging use to assess graft-reconstructed neural circuits. Stem Cells, 2020, 38, 716-726.	3.2	7
71	In vivo conversion of dopamine neurons in mouse models of Parkinson's disease — a future approach for regenerative therapy?. Current Opinion in Genetics and Development, 2021, 70, 76-82.	3.3	6
72	In vivo gene delivery to proliferating cells in the striatum generated in response to a 6-hydroxydopamine lesion of the nigro-striatal dopamine pathway. Neurobiology of Disease, 2008, 30, 343-352.	4.4	5

#	Article	IF	CITATIONS
73	GDNF Therapy: Can We Make It Work?. Journal of Parkinson's Disease, 2021, 11, 1019-1022.	2.8	5
74	Grafts Derived from an α-Synuclein Triplication Patient Mediate Functional Recovery but Develop Disease-Associated Pathology in the 6-OHDA Model of Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 515-528.	2.8	3
75	Stem Cell-Derived Dopamine Neurons: Will They Replace DBS as the Leading Neurosurgical Treatment for Parkinson's Disease?. Journal of Parkinson's Disease, 2021, 11, 909-917.	2.8	3
76	Repairing the Parkinsonian Brain. Journal of Parkinson's Disease, 2021, 11, S123-S125.	2.8	1
77	Extensive reinnervation of the hippocampus by embryonic basal forebrain cholinergic neurons grafted into the septum of neonatal rats with selective cholinergic lesions. Journal of Comparative Neurology, 1996, 373, 355-372.	1.6	1
78	Preface: The evolving scenario of Parkinson's research. Progress in Brain Research, 2020, 252, xix-xx.	1.4	0