Olga G Troyanskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113145/publications.pdf

Version: 2024-02-01

91 10,614 41 90 g-index

107 107 107 107 15595

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. Cell Reports, 2022, 38, 110467.	6.4	27
2	Asymptomatic SARS-CoV-2 Infection Is Associated With Higher Levels of Serum IL-17C, Matrix Metalloproteinase 10 andÂFibroblast Growth Factors Than Mild Symptomatic COVID-19. Frontiers in Immunology, 2022, 13, 821730.	4.8	21
3	Molecular Characterization of Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2022, 33, 1208-1221.	6.1	12
4	An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell, 2022, 40, 524-544.e5.	16.8	23
5	A reference tissue atlas for the human kidney. Science Advances, 2022, 8, .	10.3	67
6	A sequence-based global map of regulatory activity for deciphering human genetics. Nature Genetics, 2022, 54, 940-949.	21.4	71
7	Presenilin 1 phosphorylation regulates amyloid- \hat{l}^2 degradation by microglia. Molecular Psychiatry, 2021, 26, 5620-5635.	7.9	17
8	Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk. Nature Genetics, 2021, 53, 166-173.	21.4	49
9	An automated framework for efficiently designing deep convolutional neural networks in genomics. Nature Machine Intelligence, 2021, 3, 392-400.	16.0	29
10	Tissue-specific enhancer functional networks for associating distal regulatory regions to disease. Cell Systems, 2021, 12, 353-362.e6.	6.2	24
11	Modeling transcriptional regulation of model species with deep learning. Genome Research, 2021, 31, 1097-1105.	5 . 5	5
12	SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science Translational Medicine, 2021, 13 , .	12.4	215
13	Viable virus shedding during SARS-CoV-2 reinfection. Lancet Respiratory Medicine, the, 2021, 9, e56-e57.	10.7	11
14	Single nucleus multi-omics regulatory landscape of the murine pituitary. Nature Communications, 2021, 12, 2677.	12.8	38
15	Machine learning methods to model multicellular complexity and tissue specificity. Nature Reviews Materials, 2021, 6, 717-729.	48.7	13
16	CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes. Bioinformatics, 2021, 37, i342-i348.	4.1	17
17	Spatial transcriptional mapping of the human nephrogenic program. Developmental Cell, 2021, 56, 2381-2398.e6.	7.0	44
18	Decoding disease: from genomes to networks to phenotypes. Nature Reviews Genetics, 2021, 22, 774-790.	16.3	46

#	Article	IF	Citations
19	An analytical framework for interpretable and generalizable single-cell data analysis. Nature Methods, 2021, 18, 1317-1321.	19.0	9
20	Mapping the physiological and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons. Molecular Psychiatry, 2020, 25, 1112-1129.	7.9	18
21	Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell Therapies. Cell Systems, 2020, 11, 215-228.e5.	6.2	52
22	SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney International, 2020, 98, 1502-1518.	5.2	64
23	Lack of a site-specific phosphorylation of Presenilin 1 disrupts microglial gene networks and progenitors during development. PLoS ONE, 2020, 15, e0237773.	2.5	11
24	Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Molecular Cell, 2020, 80, 1078-1091.e6.	9.7	255
25	Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis. Neuron, 2020, 107, 821-835.e12.	8.1	99
26	Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nature Genetics, 2020, 52, 769-777.	21.4	97
27	Artificial intelligence and cancer. Nature Cancer, 2020, 1, 149-152.	13.2	26
28	Machine learning, the kidney, and genotype–phenotype analysis. Kidney International, 2020, 97, 1141-1149.	5. 2	23
29	Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight, 2020, 5, .	5.0	108
30	Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development. PLoS Genetics, 2019, 15, e1008382.	3.5	9
31	A Computational Framework for Genome-wide Characterization of the Human Disease Landscape. Cell Systems, 2019, 8, 152-162.e6.	6.2	19
32	Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nature Genetics, 2019, 51, 973-980.	21.4	216
33	Selene: a PyTorch-based deep learning library for sequence data. Nature Methods, 2019, 16, 315-318.	19.0	98
34	New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.	21.4	350
35	Minor Isozymes Tailor Yeast Metabolism to Carbon Availability. MSystems, 2019, 4, .	3.8	14
36	Voices in methods development. Nature Methods, 2019, 16, 945-951.	19.0	5

#	Article	IF	CITATIONS
37	Interpretation of an individual functional genomics experiment guided by massive public data. Nature Methods, 2018, 15, 1049-1052.	19.0	5
38	An integrative tissue-network approach to identify and test human disease genes. Nature Biotechnology, 2018, 36, 1091-1099.	17.5	54
39	A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data. PLoS Computational Biology, 2018, 14, e1006105.	3.2	3
40	GIANT 2.0: genome-scale integrated analysis of gene networks in tissues. Nucleic Acids Research, 2018, 46, W65-W70.	14.5	59
41	Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nature Genetics, 2018, 50, 1171-1179.	21.4	375
42	Enabling Precision Medicine through Integrative Network Models. Journal of Molecular Biology, 2018, 430, 2913-2923.	4.2	15
43	Serum cytokine levels in breast cancer patients during neoadjuvant treatment with bevacizumab. Oncolmmunology, 2018, 7, e1457598.	4.6	18
44	IFNÎ ³ -Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell, 2017, 170, 127-141.e15.	28.9	140
45	Bioinformatics Approaches to Profile the Tumor Microenvironment for Immunotherapeutic Discovery. Current Pharmaceutical Design, 2017, 23, 4716-4725.	1.9	11
46	Data-driven analysis of immune infiltrate in a large cohort of breast cancer and its association with disease progression, ER activity, and genomic complexity. Oncotarget, 2017, 8, 57121-57133.	1.8	31
47	A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353, .	12.6	979
48	Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nature Neuroscience, 2016, 19, 1454-1462.	14.8	359
49	GIANT API: an application programming interface for functional genomics. Nucleic Acids Research, 2016, 44, W587-W592.	14.5	2
50	Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states. Nature Communications, 2016, 7, 10528.	12.8	18
51	Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans. ELife, 2016, 5, .	6.0	96
52	FNTM: a server for predicting functional networks of tissues in mouse. Nucleic Acids Research, 2015, 43, W182-W187.	14.5	25
53	Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nature Methods, 2015, 12, 211-214.	19.0	137
54	Implications of Big Data for cell biology. Molecular Biology of the Cell, 2015, 26, 2575-2578.	2.1	42

#	Article	IF	CITATIONS
55	Understanding multicellular function and disease with human tissue-specific networks. Nature Genetics, 2015, 47, 569-576.	21.4	738
56	Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms. Bioinformatics, 2015, 31, 1093-1101.	4.1	99
57	Lowâ€variance RNAs identify Parkinson's disease molecular signature in blood. Movement Disorders, 2015, 30, 813-821.	3.9	18
58	Lymphocyte Invasion in IC10/Basal-Like Breast Tumors Is Associated with Wild-Type <i>TP53</i> Molecular Cancer Research, 2015, 13, 493-501.	3.4	53
59	IMP 2.0: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Research, 2015, 43, W128-W133.	14.5	60
60	Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 2015, 12, 931-934.	19.0	1,714
61	Interactive Big Data Resource to Elucidate Human Immune Pathways and Diseases. Immunity, 2015, 43, 605-614.	14.3	49
62	Global Quantitative Modeling of Chromatin Factor Interactions. PLoS Computational Biology, 2014, 10, e1003525.	3.2	32
63	Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies. Bioinformatics, 2013, 29, 3036-3044.	4.1	27
64	Functional Knowledge Transfer for High-accuracy Prediction of Under-studied Biological Processes. PLoS Computational Biology, 2013, 9, e1002957.	3.2	62
65	Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes. PLoS Computational Biology, 2012, 8, e1002694.	3.2	137
66	IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Research, 2012, 40, W484-W490.	14.5	105
67	Accurate evaluation and analysis of functional genomics data and methods. Annals of the New York Academy of Sciences, 2012, 1260, 95-100.	3.8	20
68	Accurate Quantification of Functional Analogy among Close Homologs. PLoS Computational Biology, 2011, 7, e1001074.	3.2	34
69	Simultaneous Genome-Wide Inference of Physical, Genetic, Regulatory, and Functional Pathway Components. PLoS Computational Biology, 2010, 6, e1001009.	3.2	20
70	Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-Depleted Murine Embryonic Stem Cells. PLoS Computational Biology, 2010, 6, e1001034.	3.2	23
71	Functional Genomics Complements Quantitative Genetics in Identifying Disease-Gene Associations. PLoS Computational Biology, 2010, 6, e1000991.	3.2	55
72	Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis. PLoS Computational Biology, 2009, 5, e1000322.	3.2	35

#	Article	IF	CITATIONS
73	Exploring the human genome with functional maps. Genome Research, 2009, 19, 1093-1106.	5.5	196
74	Graphle: Interactive exploration of large, dense graphs. BMC Bioinformatics, 2009, 10, 417.	2.6	15
75	Discovering Biological Networks from Diverse Functional Genomic Data. Methods in Molecular Biology, 2009, 563, 157-175.	0.9	18
76	Global Prediction of Tissue-Specific Gene Expression and Context-Dependent Gene Networks in Caenorhabditis elegans. PLoS Computational Biology, 2009, 5, e1000417.	3.2	84
77	A Genomewide Functional Network for the Laboratory Mouse. PLoS Computational Biology, 2008, 4, e1000165.	3.2	103
78	The Sleipnir library for computational functional genomics. Bioinformatics, 2008, 24, 1559-1561.	4.1	68
79	"Getting Started In…― A Series Not to Miss. PLoS Computational Biology, 2007, 3, e224.	3.2	0
80	Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics, 2007, 23, 2692-2699.	4.1	243
81	Context-sensitive data integration and prediction of biological networks. Bioinformatics, 2007, 23, 2322-2330.	4.1	101
82	Finding function: evaluation methods for functional genomic data. BMC Genomics, 2006, 7, 187.	2.8	189
83	A scalable method for integration and functional analysis of multiple microarray datasets. Bioinformatics, 2006, 22, 2890-2897.	4.1	127
84	Hierarchical multi-label prediction of gene function. Bioinformatics, 2006, 22, 830-836.	4.1	422
85	BAYESIAN DATA INTEGRATION: A FUNCTIONAL PERSPECTIVE. , 2006, , .		12
86	Unsupervised Machine Learning to Support Functional Characterization of Genes: Emphasis on Cluster Description and Class Discovery., 2005,, 175-192.		0
87	Putting microarrays in a context: Integrated analysis of diverse biological data. Briefings in Bioinformatics, 2005, 6, 34-43.	6.5	60
88	Discovery of biological networks from diverse functional genomic data. Genome Biology, 2005, 6, R114.	9.6	183
89	Accurate detection of aneuploidies in array CGH and gene expression microarray data. Bioinformatics, 2004, 20, 3533-3543.	4.1	109
90	A Bayesian framework for combining heterogeneous data sources for gene function prediction (inSaccharomyces cerevisiae). Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8348-8353.	7.1	491

#	Article	IF	CITATIONS
91	Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 2002, 18, 1454-1461.	4.1	276