Stephen R Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Examining the neural antecedents of tics in Tourette syndrome using electroencephalography. Journal of Neuropsychology, 2022, 16, 1-20.	0.6	11
2	Non-invasive brain stimulation as therapy: systematic review and recommendations with a focus on the treatment of Tourette syndrome. Experimental Brain Research, 2022, 240, 341-363.	0.7	9
3	The oscillatory effects of rhythmic median nerve stimulation. NeuroImage, 2022, 251, 118990.	2.1	6
4	Somatomotor cortical mapping in Tourette syndrome using neuro-navigated transcranial magnetic stimulation. International Review of Movement Disorders, 2022, , 321-341.	0.1	0
5	Developing the Premonitory Urges for Tic Disorders Scale–Revised (PUTSâ€R). Journal of Neuropsychology, 2021, 15, 129-142.	0.6	9
6	Acute gabapentin administration in healthy adults. A double-blind placebo-controlled study using transcranial magnetic stimulation and 7T 1H-MRS. NeuroImage Reports, 2021, 1, 100003.	0.5	0
7	The role of the cingulate cortex in the generation of motor tics and the experience of the premonitory urgeâ€ŧoâ€ŧic in Tourette syndrome. Journal of Neuropsychology, 2021, 15, 340-362.	0.6	11
8	Operculo-insular and anterior cingulate plasticity induced by transcranial magnetic stimulation in the human motor cortex: a dynamic casual modeling study. Journal of Neurophysiology, 2021, 125, 1180-1190.	0.9	9
9	A feasibility study for somatomotor cortical mapping in Tourette syndrome using neuronavigated transcranial magnetic stimulation. Cortex, 2020, 129, 175-187.	1.1	9
10	Entraining Movement-Related Brain Oscillations to Suppress Tics in Tourette Syndrome. Current Biology, 2020, 30, 2334-2342.e3.	1.8	23
11	Rethinking the nature of inhibitory control deficits in Tourette syndrome. Brain, 2020, 143, 721-722.	3.7	2
12	Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Frontiers in Human Neuroscience, 2020, 14, 31.	1.0	36
13	The role of the insula in the generation of motor tics and the experience of the premonitory urge-to-tic in Tourette syndrome. Cortex, 2020, 126, 119-133.	1.1	34
14	Alterations in cerebellar grey matter structure and covariance networks in young people with Tourette syndrome. Cortex, 2020, 126, 1-15.	1.1	22
15	Tic frequency and behavioural measures of cognitive control are improved in individuals with Tourette syndrome by aerobic exercise training. Cortex, 2020, 129, 188-198.	1.1	8
16	Reply: Forward model deficits and enhanced motor noise in Tourette syndrome?. Brain, 2019, 142, e54-e54.	3.7	0
17	Effects of single-session cathodal transcranial direct current stimulation on tic symptoms in Tourette's syndrome. Experimental Brain Research, 2019, 237, 2853-2863.	0.7	15
18	Impaired forward model updating in young adults with Tourette syndrome. Brain, 2019, 142, 209-219.	3.7	17

#	Article	IF	CITATIONS
19	Alterations in the microstructure of white matter in children and adolescents with Tourette syndrome measured using tract-based spatial statistics and probabilistic tractography. Cortex, 2018, 104, 75-89.	1.1	24
20	Where are we now with â€~What' and â€~How'?. Cortex, 2018, 98, 1-7.	1.1	17
21	Optic ataxia and the dorsal visual steam re-visited: Impairment in bimanual haptic matching performed without vision. Cortex, 2018, 98, 60-72.	1.1	5
22	Visuomotor learning and unlearning in children and adolescents with tourette syndrome. Cortex, 2018, 109, 50-59.	1.1	8
23	Reliability of single and paired pulse transcranial magnetic stimulation parameters across eight testing sessions. Brain Stimulation, 2018, 11, 1393-1394.	0.7	12
24	Activation induced changes in GABA: Functional MRS at 7 T with MEGA-sLASER. NeuroImage, 2017, 156, 207-213.	2.1	47
25	Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. NeuroImage, 2017, 152, 360-370.	2.1	100
26	A Neural Basis for Contagious Yawning. Current Biology, 2017, 27, 2713-2717.e2.	1.8	17
27	Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study. Brain Stimulation, 2016, 9, 58-64.	0.7	100
28	Premonitory urges are associated with decreased grey matter thickness within the insula and sensorimotor cortex in young people with <scp>T</scp> ourette syndrome. Journal of Neuropsychology, 2016, 10, 143-153.	0.6	68
29	Practitioner Review: Treatments for Tourette syndrome in children and young people – a systematic review. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 988-1004.	3.1	92
30	Intra-Subject Consistency and Reliability of Response Following 2 mA Transcranial Direct Current Stimulation. Brain Stimulation, 2016, 9, 819-825.	0.7	56
31	Effects of age on motor excitability measures from children and adolescents with Tourette syndrome. Developmental Cognitive Neuroscience, 2016, 19, 78-86.	1.9	25
32	Clinical effectiveness and patient perspectives of different treatment strategies for tics in children and adolescents with Tourette syndrome: a systematic review and qualitative analysis. Health Technology Assessment, 2016, 20, 1-450.	1.3	110
33	Enhanced saccadic control in young people with T ourette syndrome despite slowed proâ€ s accades. Journal of Neuropsychology, 2015, 9, 172-183.	0.6	21
34	Alterations in structural connectivity may contribute both to the occurrence of tics in Gilles de la Tourette syndrome and to their subsequent control. Brain, 2015, 138, 244-245.	3.7	6
35	Motor excitability during movement preparation in Tourette syndrome. Journal of Neuropsychology, 2015, 9, 33-44.	0.6	42
36	Inhibition, Disinhibition, and the Control of Action in Tourette Syndrome. Trends in Cognitive Sciences, 2015, 19, 655-665.	4.0	105

#	Article	IF	CITATIONS
37	Increased GABA Contributes to Enhanced Control over Motor Excitability in Tourette Syndrome. Current Biology, 2014, 24, 2343-2347.	1.8	114
38	tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7T magnetic resonance spectroscopy study. NeuroImage, 2014, 99, 237-243.	2.1	187
39	Motor excitability is reduced prior to voluntary movements in children and adolescents with Tourette syndrome. Journal of Neuropsychology, 2013, 7, 29-44.	0.6	39
40	Exaggerated object affordance and absent automatic inhibition in alien hand syndrome. Cortex, 2013, 49, 2040-2054.	1.1	51
41	Inserting Needles Into the Body: A Meta-Analysis of Brain Activity Associated With Acupuncture Needle Stimulation. Journal of Pain, 2013, 14, 215-222.	0.7	161
42	Cognitive control over motor output in Tourette syndrome. Neuroscience and Biobehavioral Reviews, 2013, 37, 1016-1025.	2.9	81
43	Neural correlates of changing intention in the human FEF and IPS. Journal of Neurophysiology, 2012, 107, 859-867.	0.9	10
44	Effects of motor intention on the perception of somatosensory events: A behavioural and functional magnetic resonance imaging study. Quarterly Journal of Experimental Psychology, 2011, 64, 839-854.	0.6	24
45	Resolving confusions about urges and intentions. Cognitive Neuroscience, 2011, 2, 252-257.	0.6	5
46	Compensatory Neural Reorganization in Tourette Syndrome. Current Biology, 2011, 21, 580-585.	1.8	139
47	Modulation of somatosensory perception by motor intention. Cognitive Neuroscience, 2011, 2, 47-56.	0.6	28
48	On the functional anatomy of the urge-for-action. Cognitive Neuroscience, 2011, 2, 227-243.	0.6	112
49	Cognitive neuroscience of bodily representations: Psychological processes and neural mechanisms. Cognitive Neuroscience, 2011, 2, 135-137.	0.6	2
50	Parietal cortex coding of limb posture: In search of the body-schema. Neuropsychologia, 2010, 48, 3228-3234.	0.7	67
51	Is the visual dorsal stream really very visual after all?. Cognitive Neuroscience, 2010, 1, 68-69.	0.6	2
52	Perisaccadic mislocalization in dyslexia. Neuropsychologia, 2009, 47, 77-82.	0.7	3
53	There may be more to reaching than meets the eye: Re-thinking optic ataxia. Neuropsychologia, 2009, 47, 1397-1408.	0.7	54
54	Lateralized temporal order judgement in dyslexia. Neuropsychologia, 2009, 47, 3244-3254.	0.7	22

#	Article	IF	CITATIONS
55	Repetitive transcranial magnetic stimulation over frontal eye fields disrupts visually cued auditory attention. Brain Stimulation, 2009, 2, 81-87.	0.7	20
56	Attention, competition, and the parietal lobes: insights from Balint's syndrome. Psychological Research, 2009, 73, 263-270.	1.0	14
57	An intact eyeâ€movement system is not required to generate inhibition of return. Journal of Neuropsychology, 2009, 3, 267-271.	0.6	11
58	A novel MR-compatible device for providing forces to the human finger during functional neuroimaging studies. NeuroImage, 2008, 40, 1731-1737.	2.1	3
59	Impaired orientation processing in hemispatial neglect. NeuroReport, 2007, 18, 457-460.	0.6	5
60	Human Medial Frontal Cortex Mediates Unconscious Inhibition of Voluntary Action. Neuron, 2007, 54, 697-711.	3.8	304
61	Role of the human supplementary eye field in the control of saccadic eye movements. Neuropsychologia, 2007, 45, 997-1008.	0.7	59
62	The Role of the Posterior Parietal Lobe in Prism Adaptation: Failure to Adapt to Optical Prisms in a Patient with Bilateral Damage to Posterior Parietal Cortex. Cortex, 2006, 42, 720-729.	1.1	43
63	Dorsal Simultanagnosia: an Impairment of Visual Processing or Visual Awareness?. Cortex, 2006, 42, 740-749.	1.1	13
64	Individual variation in the location of the parietal eye fields: a TMS study. Experimental Brain Research, 2006, 173, 389-394.	0.7	21
65	Visual-proprioceptive mismatch and the Taylor illusion. Experimental Brain Research, 2006, 176, 173-181.	0.7	13
66	Recalibrating Time: When Did I Do that?. Current Biology, 2006, 16, R994-R996.	1.8	2
67	Using advance information in dynamic cognitive control: An ERP study of task-switching. Brain Research, 2006, 1105, 61-72.	1.1	75
68	Posterior parietal cortex and the dissociable components of prism adaptation. Neuropsychologia, 2006, 44, 2757-2765.	0.7	63
69	Parietal updating of limb posture: An event-related fMRI study. Neuropsychologia, 2006, 44, 2685-2690.	0.7	151
70	Visuomotor functions of the posterior parietal cortex. Neuropsychologia, 2006, 44, 2589-2593.	0.7	18
71	Where the Eye Looks, the Hand Follows. Current Biology, 2005, 15, 42-46.	1.8	113
72	Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 2005, 43, 1288-1296.	0.7	79

#	Article	IF	CITATIONS
73	An evaluation of a visual biofeedback intervention in dyslexic adults. Dyslexia, 2005, 11, 61-77.	0.8	11
74	Saccade-Contingent Spatial and Temporal Errors are Absent for Saccadic Head Movements. Cortex, 2005, 41, 205-212.	1.1	12
75	Evidence from optic ataxia does not support a distinction between planning and control mechanisms in human motor control. Behavioral and Brain Sciences, 2004, 27, .	0.4	0
76	Cognitive Neuroscience: Vision and Touch Are Constant Companions. Current Biology, 2004, 14, R349-R350.	1.8	3
77	Exogenous Orienting of Attention Depends upon the Ability to Execute Eye Movements. Current Biology, 2004, 14, 792-795.	1.8	87
78	Implicit Processing of Global Information in Balint's Syndrome. Cortex, 2004, 40, 179-180.	1.1	16
79	Mental Representation of Number in Different Numerical Forms. Current Biology, 2003, 13, 2045-2050.	1.8	17
80	Cognitive Control Mechanisms Revealed by ERP and fMRI: Evidence from Repeated Task-Switching. Journal of Cognitive Neuroscience, 2003, 15, 785-799.	1.1	171
81	Visual attention in blindsight: sensitivity in the blind field increased by targets in the sighted field. NeuroReport, 2002, 13, 301-304.	0.6	6
82	ls Grasping Impaired in Hemispatial Neglect?. Behavioural Neurology, 2002, 13, 17-28.	1.1	31
83	Motor Aspects of Hemispatial Neglect. Behavioural Neurology, 2002, 13, 1-2.	1.1	1
84	Co-ordination of bimanual movements in a centrally deafferented patient executing open loop reach-to-grasp movements. Acta Psychologica, 2002, 110, 231-246.	0.7	12
85	Monocular Vision Leads to a Dissociation between Grip Force and Grip Aperture Scaling during Reach-to-Grasp Movements. Current Biology, 2002, 12, 237-240.	1.8	22
86	Noninformative Vision Improves Haptic Spatial Perception. Current Biology, 2002, 12, 1661-1664.	1.8	107
87	â€~Action binding': dynamic interactions between vision and touch. Trends in Cognitive Sciences, 2001, 5, 505-506.	4.0	17
88	ERP correlates of executive control during repeated language switching. Bilingualism, 2001, 4, 169-178.	1.0	225
89	Prism adaptation produces neglect-like patterns of hand path curvature in healthy adults. Neuropsychologia, 2001, 39, 810-814.	0.7	10
90	Vision: Getting to grips with the Ebbinghaus illusion. Current Biology, 2001, 11, R304-R306.	1.8	25

#	Article	IF	CITATIONS
91	Links between vision and somatosensation. Current Biology, 2001, 11, 975-980.	1.8	82
92	Vision: Visual space is not what it appears to be. Current Biology, 2001, 11, R753-R755.	1.8	4
93	The Ponzo illusion affects grip-force but not grip-aperture scaling during prehension movements Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 418-423.	0.7	176
94	Reaching movements may reveal the distorted topography of spatial representations after neglect. Neuropsychologia, 2000, 38, 500-507.	0.7	46
95	The control of bimanual reach-to-grasp movements in hemiparkinsonian patients. Experimental Brain Research, 2000, 132, 390-398.	0.7	34
96	Pathological perceptual completion in hemianopia extends to the control of reach-to-grasp movements. NeuroReport, 1999, 10, 2461-2466.	0.6	20
97	The selection and suppression of action. NeuroReport, 1999, 10, 861-865.	0.6	73
98	The influence of initial hand posture on the expression of prehension parameters. Experimental Brain Research, 1998, 119, 9-16.	0.7	17
99	Selective Reaching to Grasp: Evidence for Distractor Interference Effects. Visual Cognition, 1997, 4, 1-38.	0.9	334
100	A Kinematic Analysis of Goal-directed Prehension Movements Executed under Binocular, Monocular, and Memory-guided Viewing Conditions. Visual Cognition, 1997, 4, 113-142.	0.9	87
101	Grip force scaling after hemispatial neglect. NeuroReport, 1997, 8, 3837-3840.	0.6	7
102	Visual control of hand action. Trends in Cognitive Sciences, 1997, 1, 310-317.	4.0	17
103	Visuomotor functions of the lateral pre-motor cortex. Current Opinion in Neurobiology, 1996, 6, 788-795.	2.0	53
104	Serial reaction time learning and Parkinson's disease: Evidence for a procedural learning deficit. Neuropsychologia, 1995, 33, 577-593.	0.7	271
105	Networks of anatomical areas controlling visuospatial attention. Neural Networks, 1994, 7, 925-944.	3.3	29
106	The significance of the basal ganglia in suppressing hyper-reflexive orienting. Behavioral and Brain Sciences, 1993, 16, 581-582.	0.4	2
107	Psychology of architectural design. Behaviour Research and Therapy, 1989, 27, 102-103.	1.6	0