Junhe Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/511252/publications.pdf

Version: 2024-02-01

		87888	85541
98	5,418	38	71
papers	citations	h-index	g-index
100	100	100	3902
100	100	100	3902
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photodegradation of benzophenones sensitized by nitrite. Science of the Total Environment, 2022, 802, 149850.	8.0	11
2	Transformation of bromide and formation of brominated disinfection byproducts in peracetic acid oxidation of phenol. Chemosphere, 2022, 291, 132698.	8.2	11
3	Aquatic photolysis of 2,4-dichloro-6-nitrophenolâ€"the toxic nitrated byproduct of 2,4-dichlorophenol. Chemosphere, 2022, 291, 132986.	8.2	4
4	Direct and nitrite-sensitized indirect photolysis of effluent-derived phenolic contaminants under UV ₂₅₄ irradiation. Environmental Sciences: Processes and Impacts, 2022, 24, 127-139.	3 . 5	5
5	Formation of Nitrophenolic Byproducts during UV-Activated Peroxydisulfate Oxidation in the Presence of Nitrate. ACS ES&T Engineering, 2022, 2, 222-231.	7.6	7
6	Aquatic photolysis of ketoprofen generates products with photosensitizing activity and toxicity. Water Research, 2022, 210, 117982.	11.3	8
7	Transformation of amino acids and formation of nitrophenolic byproducts in sulfate radical oxidation processes. Journal of Hazardous Materials, 2022, 431, 128648.	12.4	9
8	Differentiation of Pathways of Nitrated Byproduct Formation from Ammonium and Nitrite During Sulfate Radical Oxidation. Environmental Science & Enviro	10.0	16
9	Self-Accelerated Photodegradation of 2,4-Dihydroxybenzophenone in Water: Formation of Photoactive Products and Implications for the Transformation of Coexisting Organic Contaminants. ACS ES&T Water, 2022, 2, 1065-1072.	4.6	2
10	Formation of brominated by-products during the degradation of tetrabromobisphenol S by Co2+/peroxymonosulfate oxidation. Journal of Environmental Management, 2022, 314, 115091.	7.8	7
11	Experimental and theoretical study on Fe(VI) oxidative degradation of dichlorophen in water: Kinetics and reaction mechanisms Environmental Pollution, 2022, 306, 119394.	7.5	4
12	Formation of nitrophenolic byproducts in soils subjected to sulfate radical oxidation. Chemical Engineering Journal, 2021, 403, 126316.	12.7	13
13	Degradation of sulfamethoxazole by Co3O4-palygorskite composites activated peroxymonosulfate oxidation. Chemical Engineering Journal, 2021, 406, 126759.	12.7	65
14	Enhancing the performance of Fenton-like oxidation by a dual-layer membrane: A sequential interception-oxidation process. Journal of Hazardous Materials, 2021, 402, 123766.	12.4	18
15	Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. Water Research, 2021, 189, 116599.	11.3	46
16	Aqueous photodecomposition of the emerging brominated flame retardant tetrabromobisphenol S (TBBPS). Environmental Pollution, 2021, 271, 116406.	7.5	15
17	UV/H2O2 oxidation of chloronitrobenzenes in waters revisited: Hydroxyl radical induced self-nitration. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410, 113162.	3.9	7
18	High-Efficiency and Sustainable Desalination Using Thermo-regenerable MOF-808-EDTA: Temperature-Regulated Proton Transfer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23833-23842.	8.0	26

#	Article	IF	CITATIONS
19	The nature and catalytic reactivity of UiO-66 supported Fe3O4 nanoparticles provide new insights into Fe-Zr dual active centers in Fenton-like reactions. Applied Catalysis B: Environmental, 2021, 286, 119943.	20.2	65
20	Fluoroquinolone antibiotics sensitized photodegradation of isoproturon. Water Research, 2021, 198, 117136.	11.3	21
21	Trace level nitrite sensitized photolysis of the antimicrobial agents parachlormetaxylenol and chlorophene in water. Water Research, 2021, 200, 117275.	11.3	20
22	Hydrogen peroxide suppresses the formation of brominated oxidation by-products in heat-activated peroxydisulfate oxidation process. Chemical Engineering Journal, 2021, 417, 129138.	12.7	13
23	Transformation of ammonium to nitrophenolic byproducts by sulfate radical oxidation. Water Research, 2021, 202, 117432.	11.3	34
24	Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment. Applied Catalysis B: Environmental, 2021, 295, 120282.	20.2	40
25	Accelerated oxidation of the emerging brominated flame retardant tetrabromobisphenol S by unactivated peroxymonosulfate: The role of bromine catalysis and formation of disinfection byproducts. Water Research, 2021, 204, 117584.	11.3	22
26	Role of schwertmannite or jarosite in photocatalytic degradation of sulfamethoxazole in ultraviolet/peroxydisulfate system. Separation and Purification Technology, 2021, 274, 118991.	7.9	14
27	Nitrite-mediated photodegradation of sulfonamides and formation of nitrated products. Chemosphere, 2021, 282, 130968.	8.2	8
28	Effects of chloride on electrochemical degradation of perfluorooctanesulfonate by Magnéli phase Ti4O7 and boron doped diamond anodes. Water Research, 2020, 170, 115254.	11.3	83
29	Degradation of triclosan in a peroxymonosulfate/Brâ° system: Identification of reactive species and formation of halogenated byproducts. Chemical Engineering Journal, 2020, 384, 123297.	12.7	25
30	Conditioning with zero-valent iron or Fe2+ activated peroxydisulfate at an acidic initial sludge pH removed intracellular antibiotic resistance genes but increased extracellular antibiotic resistance genes in sewage sludge. Journal of Hazardous Materials, 2020, 386, 121982.	12.4	42
31	Change of disinfection byproducts formation potential of natural organic matter after exposure to persulphate and bicarbonate. Water Research, 2020, 182, 115970.	11.3	6
32	Coupling of natural organic matter–metal binding and laccase-catalyzed oxidation of tetrabromobisphenol A. Environmental Science and Pollution Research, 2020, 27, 30199-30209.	5.3	4
33	Enhancing the Fenton-like Catalytic Activity of nFe ₂ O ₃ by MIL-53(Cu) Support: A Mechanistic Investigation. Environmental Science & Environmental Science	10.0	103
34	Wrinkle structure on multifunctional MOFs to facilitate PPCPs adsorption in wastewater. Chemical Engineering Journal, 2020, 387, 124196.	12.7	61
35	Formation of chloronitrophenols upon sulfate radical-based oxidation of 2-chlorophenol in the presence of nitrite. Environmental Pollution, 2020, 261, 114242.	7.5	23
36	Rethinking sulfate radical-based oxidation of nitrophenols: Formation of toxic polynitrophenols, nitrated biphenyls and diphenyl ethers. Journal of Hazardous Materials, 2019, 361, 152-161.	12.4	83

#	Article	IF	CITATIONS
37	Degradation of iohexol by Co2+ activated peroxymonosulfate oxidation: Kinetics, reaction pathways, and formation of iodinated byproducts. Chemical Engineering Journal, 2019, 373, 1348-1356.	12.7	33
38	Formation of Nitrophenolic Byproducts during Heat-Activated Peroxydisulfate Oxidation in the Presence of Natural Organic Matter and Nitrite. Environmental Science & Environmental Science & 2019, 53, 4255-4264.	10.0	67
39	Sulfate radical-induced incorporation of NO2 group into chlorophenols. Environmental Chemistry Letters, 2019, 17, 1111-1116.	16.2	17
40	Comments on "Enhanced removal of organic contaminants in water by the combination of peroxymonsulfate and carbonateâ€, Science of the Total Environment, 647, 734–743 (2019). Science of the Total Environment, 2019, 670, 1240-1241.	8.0	0
41	Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes. Water Research, 2018, 133, 299-309.	11.3	77
42	Transformation of antimicrobial agent sulfamethazine by peroxymonosulfate: Radical vs. nonradical mechanisms. Science of the Total Environment, 2018, 636, 864-871.	8.0	46
43	Formation of halogenated disinfection byproducts during the degradation of chlorophenols by peroxymonosulfate oxidation in the presence of bromide. Chemical Engineering Journal, 2018, 343, 235-243.	12.7	43
44	Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: Kinetics, mechanisms, and implications for water treatment. Water Research, 2018, 147, 82-90.	11.3	125
45	Enhanced formation of chlorinated disinfection byproducts in the UV/chlorine process in the presence of benzophenone-4. Chemical Engineering Journal, 2018, 351, 304-311.	12.7	20
46	UV-activated persulfate oxidation of the insensitive munitions compound 2,4-dinitroanisole in water: Kinetics, products, and influence of natural photoinducers. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 188-195.	3.9	25
47	Chlorination and chloramination of benzophenone-3 and benzophenone-4 UV filters. Ecotoxicology and Environmental Safety, 2018, 163, 528-535.	6.0	17
48	Perfluorooctanesulfonate Degrades in a Laccase-Mediator System. Environmental Science & Emp; Technology, 2018, 52, 10617-10626.	10.0	62
49	Denitration and renitration processes in sulfate radical-mediated degradation of nitrobenzene. Chemical Engineering Journal, 2017, 315, 591-597.	12.7	39
50	Predicting Cadmium Safety Thresholds in Soils Based on Cadmium Uptake by Chinese Cabbage. Pedosphere, 2017, 27, 475-481.	4.0	33
51	Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process. Chemosphere, 2017, 181, 400-408.	8.2	45
52	Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: Formation of SO 2 extrusion products and effects of natural organic matter. Science of the Total Environment, 2017, 593-594, 704-712.	8.0	104
53	Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems: The impact of metal ions. Environmental Pollution, 2017, 224, 649-657.	7. 5	20
54	Bicarbonate-activated persulfate oxidation of acetaminophen. Water Research, 2017, 116, 324-331.	11.3	169

#	Article	IF	CITATIONS
55	Transformation of triclosan by laccase catalyzed oxidation: The influence of humic acid-metal binding process. Environmental Pollution, 2017, 220, 1418-1423.	7.5	30
56	Comparative study of the formation of brominated disinfection byproducts in UV/persulfate and UV/H2O2 oxidation processes in the presence of bromide. Environmental Science and Pollution Research, 2017, 24, 23219-23225.	5.3	14
57	Degradation of atrazine in heterogeneous Co3O4 activated peroxymonosulfate oxidation process: Kinetics, mechanisms, and reaction pathways. Chemical Engineering Journal, 2017, 330, 831-839.	12.7	147
58	Ferrous-activated peroxymonosulfate oxidation of antimicrobial agent sulfaquinoxaline and structurally related compounds in aqueous solution: kinetics, products, and transformation pathways. Environmental Science and Pollution Research, 2017, 24, 19535-19545.	5.3	33
59	The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO). Water Research, 2017, 123, 249-257.	11.3	130
60	Transformation of triclosan by a novel cold-adapted laccase from Botrytis sp. FQ. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	7
61	Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides. Chemosphere, 2016, 154, 613-619.	8.2	39
62	Natural Organic Matter Exposed to Sulfate Radicals Increases Its Potential to Form Halogenated Disinfection Byproducts. Environmental Science & Enviro	10.0	67
63	Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chemical Engineering Journal, 2016, 298, 225-233.	12.7	269
64	Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products. Journal of Hazardous Materials, 2016, 313, 229-237.	12.4	122
65	Degradation of roxarsone in a sulfate radical mediated oxidation process and formation of polynitrated by-products. RSC Advances, 2016, 6, 82040-82048.	3.6	35
66	Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process. Chemical Engineering Journal, 2016, 303, 458-466.	12.7	135
67	Degradation of trimethoprim by thermo-activated persulfate oxidation: Reaction kinetics and transformation mechanisms. Chemical Engineering Journal, 2016, 286, 16-24.	12.7	122
68	Degradation of tetrabromobisphenol A in heat activated persulfate oxidation process. RSC Advances, 2016, 6, 29718-29726.	3.6	24
69	Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment. PLoS ONE, 2015, 10, e0139580.	2.5	49
70	Transformation of $17\hat{l}^2$ -Estradiol by Phanerochaete chrysosporium in Different Culture Media. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 265-271.	2.7	7
71	New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms. Journal of Hazardous Materials, 2015, 285, 491-500.	12.4	307
72	Laccase-Catalyzed Degradation of Perfluorooctanoic Acid. Environmental Science and Technology Letters, 2015, 2, 198-203.	8.7	60

#	Article	IF	Citations
73	Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol. Water Research, 2015, 84, 1-7.	11.3	112
74	Formation of Halogenated Polyaromatic Compounds by Laccase Catalyzed Transformation of Halophenols. Environmental Science & En	10.0	55
75	Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. Journal of Hazardous Materials, 2015, 300, 39-47.	12.4	354
76	Transformation of bromide in thermo activated persulfate oxidation processes. Water Research, 2015, 78, 1-8.	11.3	106
77	Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Water Research, 2015, 87, 1-9.	11.3	344
78	Nucleophilic substitution as a mechanism of atrazine sequestration in soil. Journal of Hazardous Materials, 2015, 284, 103-107.	12.4	1
79	Transformation of sulfonylurea herbicides in simulated drinking water treatment processes. Environmental Science and Pollution Research, 2015, 22, 3847-3855.	5.3	4
80	Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chemical Engineering Journal, 2015, 263, 45-54.	12.7	438
81	Removal of $17\hat{l}^2$ -estradiol in laccase catalyzed treatment processes. Frontiers of Environmental Science and Engineering, 2014, 8, 372-378.	6.0	13
82	Analysis of oestrogenic hormones in chicken litter by HPLC with fluorescence detection. International Journal of Environmental Analytical Chemistry, 2014, 94, 783-790.	3.3	13
83	Horseradish Peroxidase Inactivation: Heme Destruction and Influence of Polyethylene Glycol. Scientific Reports, 2013, 3, 3126.	3.3	44
84	Influence of poultry litter land application on the concentrations of estrogens in water and sediment within a watershed. Environmental Sciences: Processes and Impacts, 2013, 15, 1383.	3.5	9
85	Covalent bonding of chloroanilines to humic constituents: Pathways, kinetics, and stability. Environmental Pollution, 2013, 180, 48-54.	7.5	15
86	Transformation of 17ß-Estradiol Mediated by Lignin Peroxidase: The Role of Veratryl Alcohol. Archives of Environmental Contamination and Toxicology, 2010, 59, 13-19.	4.1	16
87	Ligninase-mediated removal of $17\hat{l}^2$ -estradiol from water in the presence of natural organic matter: Efficiency and pathways. Chemosphere, 2010, 80, 469-473.	8.2	30
88	Ligninase-Mediated Removal of Natural and Synthetic Estrogens from Water: II. Reactions of 1712-Estradiol. Environmental Science & Echnology, 2010, 44, 2599-2604.	10.0	69
89	Ligninase-Mediated Removal of Natural and Synthetic Estrogens from Water: I. Reaction Behaviors. Environmental Science & Environmental Science & Envir	10.0	46
90	Removal of Acetaminophen Using Enzyme-Mediated Oxidative Coupling Processes: I. Reaction Rates and Pathways. Environmental Science & Environmental Sci	10.0	109

#	Article	IF	CITATION
91	Removal of Acetaminophen Using Enzyme-Mediated Oxidative Coupling Processes: II. Cross-Coupling with Natural Organic Matter. Environmental Science & Environmental Science & 2009, 43, 7068-7073.	10.0	58
92	A spectroscopic study of the bromination of the endocrine disruptor ethynylestradiol. Chemosphere, 2008, 72, 504-508.	8.2	10
93	Reactions of the Flavonoid Hesperetin with Chlorine:Â A Spectroscopic Study of the Reaction Pathways. Environmental Science &	10.0	21
94	The interference of 2-chloro-5-oxo-3-hexene diacyl chloride (COHC) in the detection of strong mutagen MX. Chemosphere, 2002, 48, 29-33.	8.2	4
95	Some problems in the detection of strong mutagen MX formed by chlorinating the aromatic acids and phenolic compounds. Water Research, 2002, 36, 970-974.	11.3	7
96	A possible new disinfection by-productâ€"2-chloro-5-oxo-3-hexene diacyl chloride (COHC)â€"in formation of MX by chlorinating model compounds. Water Research, 2002, 36, 4535-4542.	11.3	12
97	Factors on the formation of strong mutagen [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] MX by chlorination of syringaldehyde. Water Research, 2000, 34, 4313-4317.	11.3	10
98	Screening the precursors of strong mutagen [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] MX from chlorinated water. Water Research, 2000, 34, 225-229.	11.3	37