Giovanna Bosica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5112337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Azaâ€Michael Mono―and Bisâ€Addition of Primary and Secondary Amines Promoted by Silicaâ€Supported Polyphosphoric Acid, PPA/SiO ₂ . ChemistrySelect, 2022, 7, .	1.5	2
2	Recent Advances in Multicomponent Reactions Catalysed under Operationally Heterogeneous Conditions. Catalysts, 2022, 12, 725.	3.5	18
3	Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via a Three-Component Biginelli Reaction. Molecules, 2021, 26, 3753.	3.8	27
4	CHAPTER 3. Heterogeneous Catalysis. , 2021, , 45-67.		2
5	One-pot multicomponent green Hantzsch synthesis of 1,2-dihydropyridine derivatives with antiproliferative activity. Beilstein Journal of Organic Chemistry, 2020, 16, 2862-2869.	2.2	9
6	One-pot multicomponent nitro-Mannich reaction using a heterogeneous catalyst under solvent-free conditions. PeerJ, 2018, 6, e5065.	2.0	11
7	Revisiting the Betti Synthesis: Using a Cheap, Readily Available, Recyclable Clay Catalyst under Solventless Conditions. European Journal of Organic Chemistry, 2018, 2018, 6127-6133.	2.4	15
8	A regioselective one-pot aza-Friedel–Crafts reaction for primary, secondary and tertiary anilines using a heterogeneous catalyst. Green Chemistry, 2017, 19, 5683-5690.	9.0	19
9	The KA2 coupling reaction under green, solventless, heterogeneous catalysis. Journal of Molecular Catalysis A, 2017, 426, 542-549.	4.8	35
10	Solvent-Free Henry and Michael Reactions with Nitroalkanes Promoted by Potassium Carbonate as a Versatile Heterogeneous Catalyst. Journal of Chemistry, 2017, 2017, 1-9.	1.9	6
11	Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions. Molecules, 2016, 21, 815.	3.8	43
12	Unprecedented one-pot multicomponent synthesis of propargylamines using Amberlyst A-21 supported Cul under solvent-free conditions. RSC Advances, 2015, 5, 46074-46087.	3.6	29
13	Aza-Michael reaction: selective mono- versus bis-addition under environmentally-friendly conditions. Tetrahedron, 2014, 70, 2449-2454.	1.9	21
14	Uncatalyzed, green aza-Michael addition of amines to dimethyl maleate. Tetrahedron, 2014, 70, 6607-6612.	1.9	33
15	1â€Alkoxyaminoâ€2â€nitroalkanes as Key Building Blocks for a Chemo―and Diastereoselective Synthesis of a New Type of Polyfunctionalized <i>N</i> â€Alkoxypiperidine. European Journal of Organic Chemistry, 2010, 2010, 5482-5488.	2.4	2
16	Solvent-Free, anti-Michael Addition of Active Methylene Derivatives to β-Nitroacrylates: Eco-Friendly, Chemoselective Synthesis of Polyfunctionalized Nitroalkanes. Synlett, 2009, 2009, 268-270.	1.8	11
17	β-Nitroacrylates and silyl enol ethers as key starting materials for the synthesis of polyfunctionalized β-nitro esters and 1,2-oxazine-2-oxides. Tetrahedron, 2009, 65, 2916-2920.	1.9	13
18	Uncatalyzed, anti-Michael addition of amines to β-nitroacrylates: practical, eco-friendly synthesis of β-nitro-Î+-amino esters. Tetrahedron Letters, 2008, 49, 3865-3867	1.4	29

#	Article	IF	CITATIONS
19	Isolute® Si-carbonate catalyzes the nitronate addition to both aldehydes and electron-poor alkenes under solvent-free conditions. Green Chemistry, 2008, 10, 541.	9.0	24
20	Synthesis of fine chemicals by the conjugate addition of nitroalkanes to electrophilic alkenes. Pure and Applied Chemistry, 2006, 78, 1857-1866.	1.9	23
21	Acyclic α-nitro ketones: a versatile class of α-functionalized ketones in organic synthesis. Tetrahedron, 2005, 61, 8971-8993.	1.9	55
22	Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes:  Recent Results. Chemical Reviews, 2005, 105, 933-972.	47.7	465
23	Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results. ChemInform, 2005, 36, no.	0.0	1
24	Acyclic α-Nitro Ketones: A Versatile Class of α-Functionalized Ketones in Organic Synthesis. ChemInform, 2005, 36, no.	0.0	0
25	ZnNaY zeolite catalysed reaction of \hat{l}^2 -dicarbonyl compounds with ethyl cyanoformate under solventless conditions. Green Chemistry, 2005, 7, 182-184.	9.0	15
26	Neutral alumina catalysed synthesis of 3-nitro-1,2-dihydroquinolines and 3-nitrochromenes, under solvent-free conditions, via tandem process. Green Chemistry, 2005, 7, 825.	9.0	32
27	A New, One Pot Synthesis of Alkylated Methyl Tri- and Tetracarboxylate DerivativesÂ-by Nitrolkanes. Synthesis, 2004, 2004, 605-609.	2.3	9
28	One-Pot Synthesis of 1,3-Dinitroalkanes under Heterogeneous Catalysis. Synthesis, 2004, 2004, 1938-1940.	2.3	45
29	Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. ChemInform, 2004, 35, no.	0.0	Ο
30	A New, One Pot Synthesis of Alkylated Methyl Tri- and Tetracarboxylate Derivatives by Nitroalkanes ChemInform, 2004, 35, no.	0.0	0
31	Fast Diastereoselective Baylis—Hillman Reaction by Nitroalkenes: Synthesis of Di- and Triene Derivatives ChemInform, 2004, 35, no.	0.0	Ο
32	One-Pot Synthesis of 1,3-Dinitroalkanes under Heterogeneous Catalysis ChemInform, 2004, 35, no.	0.0	0
33	Fast diastereoselective Baylis–Hillman reaction by nitroalkenes: synthesis of di- and triene derivatives. Tetrahedron, 2004, 60, 4995-4999.	1.9	24
34	Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chemical Reviews, 2004, 104, 199-250.	47.7	403
35	MCM-41-TBD as a New, Efficient, Supported Heterogeneous Catalyst for the Synthesis of Thioureas ChemInform, 2003, 34, no.	0.0	0
36	One-Pot Synthesis of γ-Diketones, γ-Keto Esters, and Conjugated Cyclopentenones from Nitroalkanes ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
37	Use of Heterogeneous Catalyst KG-60-NEt2 in Michael and Henry Reactions Involving Nitroalkanes ChemInform, 2003, 34, no.	0.0	0
38	Uncatalyzed Conversion of Linear α-Nitro Ketones into Amides by Reaction with Primary Amines under Solventless Conditions ChemInform, 2003, 34, no.	0.0	0
39	Conjugate Addition of Nitroalkanes to N-Substituted Maleimides. Synthesis of 3-Alkylsuccinimides and Pyrrolidines ChemInform, 2003, 34, no.	0.0	0
40	Conjugate Addition of Nitroalkanes to Dimethyl Maleate. Regioselective Formation of Both Monoesters of 2-Alkylsuccinic Acids ChemInform, 2003, 34, no.	0.0	0
41	Use of heterogeneous catalyst KC-60-NEt2 in Michael and Henry reactions involving nitroalkanes. Tetrahedron Letters, 2003, 44, 2271-2273.	1.4	60
42	Uncatalyzed conversion of linear α-nitro ketones into amides by reaction with primary amines under solventless conditions. Tetrahedron, 2003, 59, 1143-1145.	1.9	29
43	Conjugate addition of nitroalkanes to N-substituted maleimides. Synthesis of 3-alkylsuccinimides and pyrrolidines. Tetrahedron, 2003, 59, 3603-3608.	1.9	50
44	Conjugate addition of nitroalkanes to dimethyl maleate. Regioselective formation of both monoesters of 2-alkylsuccinic acids. Tetrahedron, 2003, 59, 7283-7289.	1.9	13
45	Nitroalkanes and Dimethyl Maleate as Source of 3-Alkyl Succinic Anhydrides and (E)-3-Alkylidene Succinic Anhydrides. Synthesis, 2002, 2002, 681-685.	2.3	21
46	Michael Addition of Nitroalkanes to Dimethyl Citraconate, with DBU as Base: An Unexpected, One-Pot Synthesis of Polyfunctionalized Carbonyl Derivatives. Synlett, 2002, 2002, 1706-1708.	1.8	8
47	One-Pot Synthesis of γ-Diketones, γ-Keto Esters, and Conjugated CyclopentenonesÂ-from Nitroalkanes. Synthesis, 2002, 2002, 2725-2728.	2.3	30
48	Addition of Organocerium Reagents to Morpholine Amides:  Synthesis of Important Pheromone Components of Achaea janata. Journal of Organic Chemistry, 2002, 67, 8938-8942.	3.2	58
49	Preparation of enantiomerically pure 4-alkyl-5-formyl-4-nitrocyclohex-1-enes from 5-glyco-4-nitrocyclohex-1-enes. Tetrahedron: Asymmetry, 2002, 13, 1773-1787.	1.8	9
50	Unprecedented, selective Nef reaction of secondary nitroalkanes promoted by DBU under basic homogeneous conditions. Tetrahedron Letters, 2002, 43, 5233-5235.	1.4	55
51	MCM-41-TBD as a new, efficient, supported heterogeneous catalyst for the synthesis of thioureas. Tetrahedron Letters, 2002, 43, 8445-8447.	1.4	26
52	Clay-catalysed solventless synthesis of trans-chalcones. Green Chemistry, 2001, 3, 178-180.	9.0	61
53	Stereoselective Synthesis of (E)-4-Alkylidenecyclopent-2-en-1-ones by a Tandem Ring Closureâ^'Michael Additionâ^'Elimination. Organic Letters, 2001, 3, 1265-1267.	4.6	40
54	Stereoselective preparation of (E)-ε-nitro-β,γ-unsaturated methyl esters: Amberlyst A 27, using microwave, as superior catalyst for the 1,6-conjugate addition of nitroalkanes to methyl 1,3-butadiene-1-carboxylate. Tetrahedron Letters, 2001, 42, 8471-8473.	1.4	20

#	Article	IF	CITATIONS
55	Observations on the alkylation of \hat{l}^2 -acetalic carbanions: monoalkylation versus dialkylation and elimination. Tetrahedron, 2001, 57, 4461-4465.	1.9	12
56	Synthesis of functionalized nitrocyclohexene derivatives from 2-nitrocycloalkanones, via anionic domino reactions. Tetrahedron, 2001, 57, 6079-6081.	1.9	7
57	Three-component process for the synthesis of 2-amino-2-chromenes in aqueous media. Tetrahedron, 2001, 57, 1395-1398.	1.9	165
58	A New Synthesis of exo-Methylene Butyrolactones from Nitroalkanes. Synthesis, 2001, 2001, 1519.	2.3	10
59	Amberlyst® 15 as a Mild, Chemoselective and Reusable Heterogeneous Catalyst for the Conversion of Carbonyl Compounds to 1,3-Oxathiolanes. Synthesis, 2001, 2001, 1826-1829.	2.3	18
60	Synthesis of 3-Alkyl-2,5-dimethylfuran Derivatives by Indirect Alkylation of 2,5-Dimethylfuran with Aliphatic Nitrocompounds. Synthesis, 2001, 2001, 2003-2006.	2.3	16
61	Synthesis of (E)-3-Alkylidenepyrrolidines by Nucleophilic Ring Closure of (E)-2-Alkylidene-1,4-diol Derivatives. European Journal of Organic Chemistry, 2000, 2000, 2927-2931.	2.4	14
62	One-Pot Diastereoselective Synthesis of 2-Acyl-4-nitrocyclohexanol Derivatives in Aqueous Medium. Tetrahedron, 2000, 56, 4095-4099.	1.9	15
63	Alumina promoted cyclization of α-nitro-oximes: a new entry to the synthesis of 1,2,5-oxadiazoles N-oxides (furoxans). Tetrahedron Letters, 2000, 41, 8817-8820.	1.4	33
64	Nitroalkanes as a New, Convenient Source of 1-Acyl-2,5-dialkylbenzene Derivatives, in Two Steps. Journal of Organic Chemistry, 2000, 65, 6261-6263.	3.2	20
65	First TiCl4-Mediated Diastereoselective Reduction of α-Nitro Ketones toAnti-β-Nitro Alcohols by BH3·SMe2. Journal of Organic Chemistry, 2000, 65, 5854-5857.	3.2	27
66	Nitroalkanes as a new source of 2-alkylidene-1,4-diols, in two steps. Tetrahedron, 1999, 55, 13451-13456.	1.9	16
67	Fast Nitroaldol Reaction Using Powdered KOH in Dry Media. Chemistry Letters, 1999, 28, 1105-1106.	1.3	21
68	α-Nitrocycloalkanones as a new source for the one-pot synthesis of functionalized 1,4-diketones, γ-oxoaldehydes, γ-ketoesters, and methyl ω-oxoalkanoates. Tetrahedron, 1998, 54, 7573-7580.	1.9	24
69	Conjugated Addition Reactions of Nitroalkanes with Electrophilic Alkenes in Aqueous Media. European Journal of Organic Chemistry, 1998, 1998, 355-357.	2.4	36
70	1,3-Dioxolanes from carbonyl compounds over zeolite HSZ-360 as a reusable, heterogeneous catalyst. Tetrahedron Letters, 1998, 39, 1615-1618.	1.4	54
71	Zeolite HSZ-360 as a new reusable catalyst for the direct acetylation of alcohols and phenols under solventless conditions. Tetrahedron Letters, 1998, 39, 6049-6052.	1.4	147
72	Solvent free synthesis and deprotection of 1,1-diacetates over a commercially available zeolite Y as a reusable catalyst. Tetrahedron Letters, 1998, 39, 7587-7590.	1.4	75

#	Article	IF	CITATIONS
73	A one pot, solvent-free synthesis of acyclic $\hat{I}\pm$ -nitro ketones through the nitroaldol reaction. Tetrahedron Letters, 1998, 39, 7963-7964.	1.4	33
74	Synthesis of (E)-4-Oxonon-2-enoic Acid, a Natural Antibiotic Produced byStreptomyces olivaceus. Journal of Natural Products, 1998, 61, 673-674.	3.0	14
75	Envirocat EPZG®as a New Heterogeneous Catalyst for the Regeneration of Ketones from Their Tosylhydrazones. Synlett, 1997, 1997, 795-796.	1.8	9
76	Nitroaldol Reaction in Aqueous Media:  An Important Improvement of the Henry Reaction. Journal of Organic Chemistry, 1997, 62, 425-427.	3.2	140
77	Cî—,C bond fission via sulphones: A new ring cleavage of cyclic β-keto phenylsulphones. Tetrahedron, 1997, 53, 7341-7346.	1.9	17
78	α-Nitrocycloalkanones as a source of α,ï‰-dicarboxylic acid dimethyl esters. Tetrahedron, 1997, 53, 16131-16138.	1.9	15
79	Nitroalkanes as Alkyl Anion Synthons — A New Approach to the Synthesis of 2â€Substituted <i>N</i> â€Ethyl Succinimides and 2â€Substituted Succinate Diesters via Nitroalkanes. Liebigs Annalen, 1996, 1996, 2087-2089.	0.8	10
80	Nitroaldol (Henry) reaction catalyzed by amberlyst A-21 as a far superior heterogeneous catalyst Tetrahedron, 1996, 52, 1677-1684.	1.9	85
81	A new 1,4-elimination of benzenesulfinic acid from β-keto phenylsulphones Via their tosylhydrazones. Tetrahedron, 1996, 52, 10705-10710.	1.9	8
82	The Michael reaction of nitroalkanes with conjugated enones in aqueous media. Tetrahedron Letters, 1996, 37, 8027-8030.	1.4	71
83	A Michael Route to Acetals and Thioacetals: Preparation of Acetals (Thioacetals) of 2-Sulfonylacetaldehyde from Alkynyl and Other Unsaturated Aryl Sulfones. Synthesis, 1996, 1996, 1481-1484.	2.3	23
84	Functionalized Nitroalkanes in Organic Synthesis. The first concise preparation of 4-hydroxyheptadecan-7-one and 14-hydroxyoctadecan-8-one, two new hydroxy ketones isolated fromChiococca alba. Helvetica Chimica Acta, 1995, 78, 879-882.	1.6	19
85	A direct method for the synthesis of polyfunctionalized unsaturated carbonyl derivatives by Michael addition of nitroalkanes to enediones with the help of DBU. Tetrahedron, 1995, 51, 4213-4222.	1.9	49
86	A NEW, VERY SHORT PREPARATION OF 3-BENZOYLCYCLOHEXANONE, A KEY BUILDING BLOCK IN KETOPROFEN SYNTHESIS. Organic Preparations and Procedures International, 1995, 27, 561-564.	1.3	4
87	Chemoselective Conversion of Conjugated Nitroalkenes into Ketones by Sodium Borohydride-Hydrogen Peroxide: A New Synthesis of 4-Oxoalkanoic Acids, Dihydrojasmone and (±)-exo-Brevicomin. Synthesis, 1994, 1994, 723-726.	2.3	36
88	Nitro Ketones in Organic Synthesis: A New, Short Synthesis of Racemic <i>trans</i> â€2â€methylâ€1,7â€dioxaspiro[5.5]undecane, <i>trans, transâ€</i> and <i>trans</i> , <i>cis</i> â€2,8â€dimethylâ€1,7â€dioxaspiro[5.5]undecane by Henry reaction. Liebigs Annalen Der Chemie, 1994 1994, 1235-1237.	,0.8	14
89	A simple, efficient, twoâ€step synthesis of symmetric 2,7â€dialkylâ€1,6â€dioxaspiro[4.4]nonanes. Journal of Heterocyclic Chemistry, 1994, 31, 259-260.	2.6	12
90	Synthesis of 1-Phenylheptane-1,5-dione, a New Natural Product Found in Phellinus tremulae. Journal of Natural Products, 1994, 57, 1462-1463.	3.0	5

#	Article	IF	CITATIONS
91	A New Stereoselective Synthesis of (E)alpha.,.betaUnsaturatedgammadicarbonyl Compounds by the Henry Reaction. Journal of Organic Chemistry, 1994, 59, 5466-5467.	3.2	44