
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5112149/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Model Ag/CeO2 catalysts for soot combustion: Roles of silver species and catalyst stability. Chemical<br>Engineering Journal, 2022, 430, 132802.                                                                                                  | 12.7 | 12        |
| 2  | Biomineralized Mesocrystal KCl Microreactor for Solid‣tate Synthesis of Nonâ€Oxide Nanomaterials.<br>Small Methods, 2022, , 2101207.                                                                                                              | 8.6  | 2         |
| 3  | Intercalation pseudocapacitance of hollow carbon bubbles with multilayered shells for boosting<br>K-ion storage. Journal of Materials Chemistry A, 2022, 10, 2075-2084.                                                                           | 10.3 | 6         |
| 4  | N-doped engineering of a high-voltage LiNi <sub>0.5</sub> Mn <sub>1.5</sub> O <sub>4</sub> cathode<br>with superior cycling capability for wide temperature lithium–ion batteries. Physical Chemistry<br>Chemical Physics, 2022, 24, 12214-12225. | 2.8  | 6         |
| 5  | Ozone-assisted diesel soot combustion over Mn2O3 catalysts: A tandem work of different reactive phases. Journal of Catalysis, 2022, 408, 56-63.                                                                                                   | 6.2  | 15        |
| 6  | A simple model catalyst study to distinguish the roles of different oxygen species in propane and soot combustion. Applied Catalysis B: Environmental, 2022, 310, 121331.                                                                         | 20.2 | 17        |
| 7  | Liquidâ€State Templates for Constructing B, N, Coâ€Doping Porous Carbons with a Boosting of<br>Potassiumâ€Ion Storage Performance. Advanced Energy Materials, 2021, 11, 2003215.                                                                  | 19.5 | 99        |
| 8  | "Plains–Hills― A New Model to Design Biomass-Derived Carbon Electrode Materials for<br>High-Performance Potassium Ion Hybrid Supercapacitors. ACS Sustainable Chemistry and Engineering,<br>2021, 9, 3931-3941.                                   | 6.7  | 8         |
| 9  | Highly reactive and thermally stable Ag/YSZ catalysts with macroporous fiber-like morphology for soot combustion. Applied Catalysis B: Environmental, 2021, 294, 120271.                                                                          | 20.2 | 29        |
| 10 | Bio-derived yellow porous TiO <sub>2</sub> : the lithiation induced activation of an oxygen-vacancy<br>dominated TiO <sub>2</sub> lattice evoking a large boost in lithium storage performance. Nanoscale,<br>2020, 12, 746-754.                  | 5.6  | 9         |
| 11 | Spaceâ€Confined Fabrication of MoS <sub>2</sub> @Carbon Tubes with Semienclosed Architecture<br>Achieving Superior Cycling Capability for Sodium Ion Storage. Advanced Materials Interfaces, 2020, 7,<br>2000953.                                 | 3.7  | 10        |
| 12 | Robust Pt@TiO <sub><i>x</i></sub> /TiO <sub>2</sub> Catalysts for Hydrocarbon Combustion: Effects of Pt-TiO <sub><i>x</i></sub> Interaction and Sulfates. ACS Catalysis, 2020, 10, 13543-13548.                                                   | 11.2 | 47        |
| 13 | Controlled Design of Wellâ€Dispersed Ultrathin MoS <sub>2</sub> Nanosheets inside Hollow Carbon<br>Skeleton: Toward Fast Potassium Storage by Constructing Spacious "Houses―for K Ions. Advanced<br>Functional Materials, 2020, 30, 1908755.      | 14.9 | 138       |
| 14 | Review of Plasma-Assisted Catalysis for Selective Generation of Oxygenates from CO <sub>2</sub> and CH <sub>4</sub> . ACS Catalysis, 2020, 10, 2855-2871.                                                                                         | 11.2 | 118       |
| 15 | Rigid-Flexible Coupling Carbon Skeleton and Potassium-Carbonate-Dominated Solid Electrolyte<br>Interface Achieving Superior Potassium-Ion Storage. ACS Nano, 2020, 14, 4938-4949.                                                                 | 14.6 | 67        |
| 16 | SmMn2O5 catalysts modified with silver for soot oxidation: Dispersion of silver and distortion of mullite. Applied Catalysis B: Environmental, 2020, 273, 119058.                                                                                 | 20.2 | 56        |
| 17 | Size effect of Pt nanoparticles in acid-assisted soot oxidation in the presence of NO. Journal of Environmental Sciences, 2020, 94, 64-71.                                                                                                        | 6.1  | 14        |
| 18 | Template-assisted loading of Fe <sub>3</sub> O <sub>4</sub> nanoparticles inside hollow carbon<br>"rooms―to achieve high volumetric lithium storage. Nanoscale, 2020, 12, 10816-10826.                                                            | 5.6  | 27        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Thermally stable Ag/Al2O3 confined catalysts with high diffusion-induced oxidation activity. Catalysis<br>Today, 2019, 332, 189-194.                                                                                                         | 4.4  | 18        |
| 20 | In situ regeneration of sulfated Cu/SAPO-34 catalyst forÂthe selective catalytic reduction of NOx with NH3. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 1065-1077.                                                               | 1.7  | 2         |
| 21 | Bioinspired Mineralization under Freezing Conditions: An Approach to Fabricate Porous Carbons with<br>Complicated Architecture and Superior K <sup>+</sup> Storage Performance. ACS Nano, 2019, 13,<br>11582-11592.                          | 14.6 | 146       |
| 22 | Bio-derived 3D TiO <sub>2</sub> hollow spheres with a mesocrystal nanostructure to achieve<br>improved electrochemical performance of Na-ion batteries in ether-based electrolytes. Journal of<br>Materials Chemistry A, 2019, 7, 3399-3407. | 10.3 | 24        |
| 23 | Soot oxidation over CeO2-ZrO2 based catalysts: The influence of external surface and low-temperature reducibility. Molecular Catalysis, 2019, 467, 16-23.                                                                                    | 2.0  | 20        |
| 24 | Ozone activated Ag/CeO2 catalysts for soot combustion: The surface and structural influences.<br>Chemical Engineering Journal, 2019, 375, 121961.                                                                                            | 12.7 | 28        |
| 25 | A robust core-shell silver soot oxidation catalyst driven by Co3O4: Effect of tandem oxygen delivery and Co3O4-CeO2 synergy. Applied Catalysis B: Environmental, 2019, 250, 132-142.                                                         | 20.2 | 71        |
| 26 | Dependence of shear strength of Sn–3.8Ag–0.7Cu/Co–P solder joints on the P content of Co–P<br>metallization. Journal of Materials Science: Materials in Electronics, 2019, 30, 5249-5256.                                                    | 2.2  | 4         |
| 27 | Cable-like heterogeneous porous carbon fibers with ultrahigh-rate capability and long cycle life for fast charging lithium-ion storage devices. Nanoscale, 2019, 11, 20893-20902.                                                            | 5.6  | 1         |
| 28 | Visualization of technical and tactical characteristics in fencing. Journal of Visualization, 2019, 22, 109-124.                                                                                                                             | 1.8  | 3         |
| 29 | Simple Strategy Generating Hydrothermally Stable Core–Shell Platinum Catalysts with Tunable<br>Distribution of Acid Sites. ACS Catalysis, 2018, 8, 2796-2804.                                                                                | 11.2 | 32        |
| 30 | A novel anode modified by 1,5-dihydroxyanthraquinone/multiwalled carbon nanotubes composite in<br>marine sediment microbial fuel cell and its electrochemical performance. International Journal of<br>Energy Research, 2018, 42, 2574-2582. | 4.5  | 9         |
| 31 | MnOx–CeO2 mixed oxides for diesel soot oxidation: a review. Catalysis Surveys From Asia, 2018, 22,<br>230-240.                                                                                                                               | 2.6  | 33        |
| 32 | Roles of oxygen vacancy and Oâ^' in oxidation reactions over CeO2 and Ag/CeO2 nanorod model catalysts. Journal of Catalysis, 2018, 368, 365-378.                                                                                             | 6.2  | 102       |
| 33 | Marine-Biomass-Derived Porous Carbon Sheets with a Tunable N-Doping Content for Superior<br>Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 38376-38386.                                                                   | 8.0  | 61        |
| 34 | Fibrous Bio-Carbon Foams: A New Material for Lithium-Ion Hybrid Supercapacitors with Ultrahigh<br>Integrated Energy/Power Density and Ultralong Cycle Life. ACS Sustainable Chemistry and Engineering,<br>2018, 6, 14989-15000.              | 6.7  | 35        |
| 35 | Non-carbon coating: a new strategy for improving lithium ion storage of carbon matrix. Green<br>Chemistry, 2018, 20, 3954-3962.                                                                                                              | 9.0  | 12        |
| 36 | Roles of cobalt and cerium species in three-dimensionally ordered macroporous Co Ce1-O catalysts<br>for the catalytic oxidation of diesel soot. Journal of Colloid and Interface Science, 2018, 532, 579-587.                                | 9.4  | 36        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Study of Ag promoted Fe2O3@CeO2 as superior soot oxidation catalysts: The role of Fe2O3 crystal plane and tandem oxygen delivery. Applied Catalysis B: Environmental, 2018, 237, 251-262.                                         | 20.2 | 94        |
| 38 | An exploration of soot oxidation over CeO2-ZrO2 nanocubes: Do more surface oxygen vacancies benefit the reaction?. Catalysis Today, 2017, 281, 454-459.                                                                           | 4.4  | 57        |
| 39 | A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Metals, 2017, 36, 1-9.                                                                                                                       | 7.1  | 64        |
| 40 | Biogelâ€Derived Polycrystalline MnO Spheres/Sâ€Doped Carbon Composites with Enhanced Performance<br>as Anode Materials for Lithiumâ€ion Batteries. ChemElectroChem, 2017, 4, 1411-1418.                                           | 3.4  | 12        |
| 41 | Activation and deactivation of Ag/CeO <sub>2</sub> during soot oxidation: influences of interfacial ceria reduction. Catalysis Science and Technology, 2017, 7, 2129-2139.                                                        | 4.1  | 55        |
| 42 | Squid inks-derived nanocarbons with unique "shell@pearls―structure for high performance<br>supercapacitors. Journal of Power Sources, 2017, 354, 116-123.                                                                         | 7.8  | 38        |
| 43 | Controllable synthesis of supported platinum catalysts: acidic support effect and soot oxidation catalysis. Catalysis Science and Technology, 2017, 7, 3268-3274.                                                                 | 4.1  | 9         |
| 44 | Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2204-2214.                                                   | 10.3 | 183       |
| 45 | Squid Inkâ€Assisted Fabricating MoS <sub>2</sub> Nanosheets/Ultrafine Biocarbon Spheres Composites with an Enhanced Lithium Ion Storage Performance. ChemistrySelect, 2017, 2, 8643-8649.                                         | 1.5  | 7         |
| 46 | Study of Ag/CeO2 catalysts for naphthalene oxidation: Balancing the oxygen availability and oxygen regeneration capacity. Applied Catalysis B: Environmental, 2017, 219, 231-240.                                                 | 20.2 | 62        |
| 47 | Aggregation and redispersion of silver species on alumina and sulphated alumina supports for soot oxidation. Catalysis Science and Technology, 2017, 7, 3524-3530.                                                                | 4.1  | 21        |
| 48 | Study of Ag/Ce Nd1-O2 nanocubes as soot oxidation catalysts for gasoline particulate filters:<br>Balancing catalyst activity and stability by Nd doping. Applied Catalysis B: Environmental, 2017, 203,<br>116-126.               | 20.2 | 89        |
| 49 | Effect of water vapor on sulfur poisoning of<br>MnO <sub>x</sub> –CeO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> catalyst for diesel soot<br>oxidation. RSC Advances, 2016, 6, 57033-57040.                                     | 3.6  | 8         |
| 50 | Modification of PdO/CeO2–ZrO2 catalyst by MnO x for water–gas shift reaction: redox property and valence state of Pd. Journal of Materials Science, 2016, 51, 5377-5387.                                                          | 3.7  | 8         |
| 51 | Soot oxidation over CeO2 and Ag/CeO2: Factors determining the catalyst activity and stability during reaction. Journal of Catalysis, 2016, 337, 188-198.                                                                          | 6.2  | 278       |
| 52 | N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. Journal of Materials Chemistry A, 2016, 4, 5973-5983.                                                           | 10.3 | 256       |
| 53 | Modifying porous carbon nanofibers with<br>MnO <sub>x</sub> –CeO <sub>2</sub> –Al <sub>2</sub> O <sub>3</sub> mixed oxides for NO catalytic<br>oxidation at room temperature. Catalysis Science and Technology, 2016, 6, 422-425. | 4.1  | 20        |
| 54 | Ceria-based catalysts for soot oxidation: a review. Journal of Rare Earths, 2015, 33, 567-590.                                                                                                                                    | 4.8  | 216       |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A low-cost and one-step synthesis of a novel hierarchically porous Fe <sub>3</sub> O <sub>4</sub> /C composite with exceptional porosity and superior Li <sup>+</sup> storage performance. RSC Advances, 2015, 5, 102993-102999. | 3.6  | 7         |
| 56 | Roles of Acid Sites on Pt/H-ZSM5 Catalyst in Catalytic Oxidation of Diesel soot. ACS Catalysis, 2015, 5, 909-919.                                                                                                                | 11.2 | 112       |
| 57 | Pt/Zeolite Catalysts for Soot Oxidation: Influence of Hydrothermal Aging. Journal of Physical<br>Chemistry C, 2015, 119, 17218-17227.                                                                                            | 3.1  | 34        |
| 58 | Effects of baria on propane oxidation activity of Pd/Al2O3 catalyst: Pd–BaO interaction and reaction routes. Progress in Natural Science: Materials International, 2014, 24, 280-286.                                            | 4.4  | 11        |
| 59 | Sulfation of Pt/Al2O3 catalyst for soot oxidation: High utilization of NO2 and oxidation of surface oxygenated complexes. Applied Catalysis B: Environmental, 2013, 138-139, 199-211.                                            | 20.2 | 66        |
| 60 | Synergistic effect between MnO and CeO2 in the physical mixture: Electronic interaction and NO oxidation activity. Journal of Rare Earths, 2013, 31, 1141-1147.                                                                  | 4.8  | 49        |
| 61 | Total oxidation of propane on Pt/WOx/Al2O3 catalysts by formation of metastable Ptl´+ species interacted with WOx clusters. Journal of Hazardous Materials, 2012, 225-226, 146-154.                                              | 12.4 | 102       |
| 62 | Combined promoting effects of platinum and MnOx–CeO2 supported on alumina on NOx-assisted soot oxidation: Thermal stability and sulfur resistance. Chemical Engineering Journal, 2012, 203, 25-35.                               | 12.7 | 71        |
| 63 | Effects of tungsten oxide on soot oxidation activity and sulfur poisoning resistance of Pt/Al2O3 catalyst. Catalysis Science and Technology, 2011, 1, 644.                                                                       | 4.1  | 26        |
| 64 | MnO –CeO2–Al2O3 mixed oxides for soot oxidation: Activity and thermal stability. Journal of<br>Hazardous Materials, 2011, 187, 283-290.                                                                                          | 12.4 | 127       |