
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5111508/publications.pdf Version: 2024-02-01

Μίνι λλανι

#	Article	IF	CITATIONS
1	Chatter suppression in the milling process of the weakly-rigid workpiece through a moving fixture. Journal of Materials Processing Technology, 2022, 299, 117293.	6.3	21
2	Stability analysis of the milling process of the thin floor structures. Mechanical Systems and Signal Processing, 2022, 165, 108311.	8.0	9
3	Combined Predictive and Feedback Contour Error Control With Dynamic Contour Error Estimation for Industrial Five-Axis Machine Tools. IEEE Transactions on Industrial Electronics, 2022, 69, 6668-6677.	7.9	7
4	Adaptive feed-forward friction compensation through developing an asymmetrical dynamic friction model. Mechanism and Machine Theory, 2022, 170, 104691.	4.5	9
5	Tool orientation optimization for the five-axis CNC machining to constrain the contour errors without interference. Journal of Manufacturing Processes, 2022, 76, 46-56.	5.9	8
6	Chatter detection methods in the machining processes: A review. Journal of Manufacturing Processes, 2022, 77, 240-259.	5.9	40
7	A Gaussian process regressionâ€based surrogate model of the varying workpiece dynamics for chatter prediction in milling of thinâ€walled structures. International Journal of Mechanical System Dynamics, 2022, 2, 117-130.	2.8	3
8	On cutting process damping for small cutters by including the influences of the dead metal zone and elastic recovery. Journal of Materials Processing Technology, 2022, 306, 117608.	6.3	7
9	Chatter analysis and mitigation of milling of the pocket-shaped thin-walled workpieces with viscous fluid. International Journal of Mechanical Sciences, 2021, 194, 106214.	6.7	25
10	Chip Formation Mechanism of Inconel 718: A Review of Models and Approaches. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	3.7	29
11	Asymmetrical pythagorean-hodograph (PH) spline-based C3 continuous corner smoothing algorithm for five-axis tool paths with short segments. Journal of Manufacturing Processes, 2021, 64, 1387-1411.	5.9	24
12	Mitigation of chatter in thin-wall milling by using double-side support device. International Journal of Advanced Manufacturing Technology, 2021, 115, 213-232.	3.0	8
13	Simulation of the chip morphology together with its evolution in machining of Inconel 718 by considering widely spread cutting speed. International Journal of Advanced Manufacturing Technology, 2021, 116, 175-195.	3.0	10
14	Real-time smoothing of G01 commands for five-axis machining by constructing an entire spline with the bounded smoothing error. Mechanism and Machine Theory, 2021, 161, 104307.	4.5	16
15	Stability analysis of milling process by combining the gyroscopic effect with the symmetry and runout of the cutter. Mechanical Systems and Signal Processing, 2021, 161, 107977.	8.0	13
16	Suppressing vibrations in milling-trimming process of the plate-like workpiece by optimizing the location of vibration absorber. Journal of Materials Processing Technology, 2020, 278, 116499.	6.3	12
17	FIR filter-based continuous interpolation of G01 commands with bounded axial and tangential kinematics in industrial five-axis machine tools. International Journal of Mechanical Sciences, 2020, 169, 105325.	6.7	40
18	A new decoupled tangential contouring control scheme for multi-dimensional motion. Mechanism and Machine Theory, 2020, 151, 103944.	4.5	10

#	Article	IF	CITATIONS
19	Space corner smoothing of CNC machine tools through developing 3D general clothoid. Robotics and Computer-Integrated Manufacturing, 2020, 64, 101949.	9.9	28
20	On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone. International Journal of Machine Tools and Manufacture, 2019, 146, 103452.	13.4	71
21	A tunable passive damper for suppressing chatters in thin-wall milling by considering the varying modal parameters of the workpiece. International Journal of Advanced Manufacturing Technology, 2019, 104, 4605-4616.	3.0	12
22	A unified process damping model considering the varying stiffness of the milling system. International Journal of Machine Tools and Manufacture, 2019, 147, 103470.	13.4	23
23	Design of a tunable mass damper for mitigating vibrations in milling of cylindrical parts. Chinese Journal of Aeronautics, 2019, 32, 748-758.	5.3	43
24	A new error-controllable method for smoothing the G01 commands. Chinese Journal of Aeronautics, 2019, 32, 1756-1771.	5.3	6
25	Dynamics of tapping process. International Journal of Machine Tools and Manufacture, 2019, 140, 34-47.	13.4	17
26	On improving chatter stability of thin-wall milling by prestressing. Journal of Materials Processing Technology, 2019, 264, 32-44.	6.3	45
27	Modeling of machining-induced residual stresses. Journal of Materials Science, 2019, 54, 1-35.	3.7	56
28	Identification and compensation of geometric errors of rotary axes in five-axis machine tools through constructing equivalent rotary axis (ERA). International Journal of Mechanical Sciences, 2019, 152, 211-227.	6.7	46
29	An efficient decomposition-condensation method for chatter prediction in milling large-scale thin-walled structures. Mechanical Systems and Signal Processing, 2019, 121, 58-76.	8.0	60
30	Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): A review. Composites Part A: Applied Science and Manufacturing, 2019, 117, 34-55.	7.6	71
31	Efficient prediction of varying dynamic characteristics in thin-wall milling using freedom and mode reduction methods. International Journal of Mechanical Sciences, 2019, 150, 202-216.	6.7	42
32	Singularity avoidance for five-axis machine tools through introducing geometrical constraints. International Journal of Machine Tools and Manufacture, 2018, 127, 1-13.	13.4	31
33	Identification of position independent geometric errors of rotary axes for five-axis machine tools with structural restrictions. Robotics and Computer-Integrated Manufacturing, 2018, 53, 45-57.	9.9	30
34	Optimization and improvement of stable processing condition by attaching additional masses for milling of thin-walled workpiece. Mechanical Systems and Signal Processing, 2018, 103, 196-215.	8.0	83
35	A new method using double distributed joint interface model for three-dimensional dynamics prediction of spindle-holder-tool system. International Journal of Advanced Manufacturing Technology, 2018, 95, 2729-2745.	3.0	12
36	Active Damping of Milling Vibration Using Operational Amplifier Circuit. Chinese Journal of Mechanical Engineering (English Edition), 2018, 31, .	3.7	11

#	Article	IF	CITATIONS
37	Determination of optimal geometrical parameters of peripheral mills to achieve good process stability. Advances in Manufacturing, 2018, 6, 259-271.	6.1	0
38	Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. International Journal of Mechanical Sciences, 2018, 145, 299-317.	6.7	52
39	Mechanism of process damping in milling of thin-walled workpiece. International Journal of Machine Tools and Manufacture, 2018, 134, 1-19.	13.4	59
40	Improved inverse filter for the correction of distorted measured cutting forces. International Journal of Mechanical Sciences, 2017, 120, 276-285.	6.7	24
41	Mechanics of tapping process with emphasis on measurement of feed error and estimation of its induced indentation forces. International Journal of Machine Tools and Manufacture, 2017, 114, 8-20.	13.4	14
42	Dynamic damping of machining vibration: a review. International Journal of Advanced Manufacturing Technology, 2017, 89, 2935-2952.	3.0	34
43	Theoretical prediction of machining-induced residual stresses in three-dimensional oblique milling processes. International Journal of Mechanical Sciences, 2017, 133, 426-437.	6.7	57
44	Industry-oriented method for measuring the cutting forces based on the deflections of tool shank. International Journal of Mechanical Sciences, 2017, 130, 315-323.	6.7	16
45	Working mechanism of helix angle on peak cutting forces together with its design theory for peripheral milling tools. Journal of Materials Processing Technology, 2017, 249, 570-580.	6.3	29
46	Identification of milling process damping using operational modal analysis. International Journal of Machine Tools and Manufacture, 2017, 122, 120-131.	13.4	69
47	Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces. International Journal of Machine Tools and Manufacture, 2016, 109, 36-48.	13.4	141
48	A New Algorithm for the Identification of CNC Geometric Errors. Procedia CIRP, 2016, 56, 293-298.	1.9	5
49	Effect of Cutter Runout on Chatter Stability of Milling Process. Procedia CIRP, 2016, 56, 115-118.	1.9	8
50	Study on the Correction of Cutting Force Measurement with Table Dynamometer. Procedia CIRP, 2016, 56, 119-123.	1.9	19
51	Tool Point Analysis for Bending, Torsional and Axial Receptances of tool-holder-spindle Assembly. Procedia CIRP, 2016, 56, 233-236.	1.9	2
52	Study of static and dynamic ploughing mechanisms by establishing generalized model with static milling forces. International Journal of Mechanical Sciences, 2016, 114, 120-131.	6.7	80
53	An improved method for tool point dynamics analysis using a bi-distributed joint interface model. International Journal of Mechanical Sciences, 2016, 105, 239-252.	6.7	23
54	Study on the construction mechanism of stability lobes in milling process with multiple modes. International Journal of Advanced Manufacturing Technology, 2015, 79, 589-603.	3.0	89

#	Article	IF	CITATIONS
55	Mechanics and Dynamics of Multifunctional Tools. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2015, 137, .	2.2	32
56	Generalized method for the analysis of bending, torsional and axial receptances of tool–holder–spindle assembly. International Journal of Machine Tools and Manufacture, 2015, 99, 48-67.	13.4	28
57	A unified instantaneous cutting force model for flat end mills with variable geometries. Journal of Materials Processing Technology, 2014, 214, 641-650.	6.3	63
58	Mechanics and dynamics of thread milling process. International Journal of Machine Tools and Manufacture, 2014, 87, 16-26.	13.4	70
59	A solid trimming method to extract cutter–workpiece engagement maps for multi-axis milling. International Journal of Advanced Manufacturing Technology, 2013, 68, 2801-2813.	3.0	44
60	Numerical Simulation of Milling Process: A Total Procedure. Materials Science Forum, 2013, 770, 217-220.	0.3	1
61	A new ternary-mechanism model for the prediction of cutting forces in flat end milling. International Journal of Machine Tools and Manufacture, 2012, 57, 34-45.	13.4	48
62	Phase width analysis of cutting forces considering bottom edge cutting and cutter runout calibration in flat end milling of titanium alloy. Journal of Materials Processing Technology, 2011, 211, 1852-1863.	6.3	14
63	Prediction of chatter stability for multiple-delay milling system under different cutting force models. International Journal of Machine Tools and Manufacture, 2011, 51, 281-295.	13.4	31
64	Effect of cutter runout on process geometry and forces in peripheral milling of curved surfaces with variable curvature. International Journal of Machine Tools and Manufacture, 2011, 51, 420-427.	13.4	41
65	A unified stability prediction method for milling process with multiple delays. International Journal of Machine Tools and Manufacture, 2010, 50, 29-41.	13.4	125
66	A novel cutting force modelling method for cylindrical end mill. Applied Mathematical Modelling, 2010, 34, 823-836.	4.2	60
67	Cutting force modeling for flat end milling including bottom edge cutting effect. International Journal of Machine Tools and Manufacture, 2010, 50, 986-997.	13.4	63
68	Effect of Cutting Conditions on the Stability Lobes for End Milling Process. Advanced Materials Research, 2010, 139-141, 748-751.	0.3	0
69	Systematic study on cutting force modelling methods for peripheral milling. International Journal of Machine Tools and Manufacture, 2009, 49, 424-432.	13.4	49
70	A Machining-Dimension-Based Approach to Locating Scheme Design. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008, 130, .	2.2	14
71	New Cutting Force Modeling Approach for Flat End Mill. Chinese Journal of Aeronautics, 2007, 20, 282-288.	5.3	21
72	Analysis and Optimal Design of Fixture Clamping Sequence. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2006, 128, 482-493.	2.2	33

#	Article	IF	CITATIONS
73	Numerical Prediction of Static Form Errors in Peripheral Milling of Thin-Walled Workpieces With Irregular Meshes. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2005, 127, 13-22.	2.2	71
74	Chip Thickness Analysis in Peripheral Milling of Curved Surfaces with Variable Curvature Considering Cutter Runout. Materials Science Forum, 0, 697-698, 75-79.	0.3	3