
Oswaldo HernÃ;ndez HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5110243/publications.pdf Version: 2024-02-01

Oswaldo HernÃindez

#	Article	IF	CITATIONS
1	Organocatalytic esterification of polysaccharides for food applications: A review. Trends in Food Science and Technology, 2022, 119, 45-56.	15.1	13
2	Structure-digestibility relationship from noodles based on organocatalytically esterified regular and waxy corn starch obtained by reactive extrusion using sodium propionate. Food Hydrocolloids, 2022, 131, 107825.	10.7	12
3	Prebiotic Potential of a New Sweetener Based on Galactooligosaccharides and Modified Mogrosides. Journal of Agricultural and Food Chemistry, 2022, 70, 9048-9056.	5.2	10
4	Characterization and antioxidant activity of avenanthramides from selected oat lines developed by mutagenesis technique. Food Chemistry, 2021, 343, 128408.	8.2	21
5	High-Yield Synthesis of Transglycosylated Mogrosides Improves the Flavor Profile of Monk Fruit Extract Sweeteners. Journal of Agricultural and Food Chemistry, 2021, 69, 1011-1019.	5.2	12
6	Hydrolysis and transglycosylation activities of glycosidases from small intestine brush-border membrane vesicles. Food Research International, 2021, 139, 109940.	6.2	3
7	In vitro digestion of polysaccharides: InfoGest protocol and use of small intestinal extract from rat. Food Research International, 2021, 140, 110054.	6.2	21
8	Analysis of carbohydrates and glycoconjugates in food by CE and HPLC. , 2021, , 815-842.		0
9	Enzymatic Synthesis and Structural Characterization of Novel Trehalose-Based Oligosaccharides. Journal of Agricultural and Food Chemistry, 2021, 69, 12541-12553.	5.2	5
10	Bifidobacterial β-Galactosidase-Mediated Production of Galacto-Oligosaccharides: Structural and Preliminary Functional Assessments. Frontiers in Microbiology, 2021, 12, 750635.	3.5	3
11	Advances in structure elucidation of low molecular weight carbohydrates by liquid chromatography-multiple-stage mass spectrometry analysis. Journal of Chromatography A, 2020, 1612, 460664.	3.7	11
12	Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1: An α-galactosidase displaying regioselective transgalactosylation. International Journal of Biological Macromolecules, 2020, 153, 1070-1079.	7.5	9
13	Probiotic viability in yoghurts containing oligosaccharides derived from lactulose (OsLu) during fermentation and cold storage. International Dairy Journal, 2020, 102, 104621.	3.0	18
14	Hydrolysis and transgalactosylation catalysed by β-galactosidase from brush border membrane vesicles isolated from pig small intestine: A study using lactulose and its mixtures with lactose or galactose as substrates. Food Research International, 2020, 129, 108811.	6.2	8
15	Prebiotic Properties of Non-Fructosylated α-Galactooligosaccharides from PEA (Pisum sativum L.) Using Infant Fecal Slurries. Foods, 2020, 9, 921.	4.3	13
16	Transglycosylation of Steviol Glycosides and Rebaudioside A: Synthesis Optimization, Structural Analysis and Sensory Profiles. Foods, 2020, 9, 1753.	4.3	16
17	Kinetic study on the digestibility of lactose and lactulose using small intestinal glycosidases. Food Chemistry, 2020, 316, 126326.	8.2	6
18	Andean tubers grown in Ecuador: New sources of functional ingredients. Food Bioscience, 2020, 35, 100601.	4.4	13

Oswaldo HernÃindez

#	Article	IF	CITATIONS
19	Evaluation of the impact of a rat small intestinal extract on the digestion of four different functional fibers. Food and Function, 2020, 11, 4081-4089.	4.6	10
20	Morphological, technological and nutritional properties of flours and starches from mashua (Tropaeolum tuberosum) and melloco (Ullucus tuberosus) cultivated in Ecuador. Food Chemistry, 2019, 301, 125268.	8.2	17
21	Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Microbial Cell Factories, 2019, 18, 183.	4.0	24
22	Editorial: Dietary Carbohydrate Digestibility and Metabolic Effects in Human Health. Frontiers in Nutrition, 2019, 6, 164.	3.7	6
23	High-yield purification of commercial lactulose syrup. Separation and Purification Technology, 2019, 224, 475-480.	7.9	11
24	In vitro Digestibility of Dietary Carbohydrates: Toward a Standardized Methodology Beyond Amylolytic and Microbial Enzymes. Frontiers in Nutrition, 2019, 6, 61.	3.7	21
25	<i>In Vitro</i> Digestibility of Galactooligosaccharides: Effect of the Structural Features on Their Intestinal Degradation. Journal of Agricultural and Food Chemistry, 2019, 67, 4662-4670.	5.2	39
26	In vitro Gastrointestinal Models for Prebiotic Carbohydrates: A Critical Review. Current Pharmaceutical Design, 2019, 25, 3478-3483.	1.9	15
27	Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. International Dairy Journal, 2019, 89, 77-85.	3.0	47
28	Trans-β-galactosidase activity of pig enzymes embedded in the small intestinal brush border membrane vesicles. Scientific Reports, 2019, 9, 960.	3.3	17
29	Sweetness and sensory properties of commercial and novel oligosaccharides of prebiotic potential. LWT - Food Science and Technology, 2018, 97, 476-482.	5.2	27
30	Characterization of post-translationally modified peptides by hydrophilic interaction and reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Journal of Chromatography A, 2016, 1428, 202-211.	3.7	15
31	Identification and determination of 3â€deoxyglucosone and glucosone in carbohydrateâ€rich foods. Journal of the Science of Food and Agriculture, 2015, 95, 2424-2430.	3.5	16
32	Galacto-oligosaccharides Derived from Lactulose Exert a Selective Stimulation on the Growth of Bifidobacterium animalis in the Large Intestine of Growing Rats. Journal of Agricultural and Food Chemistry, 2013, 61, 7560-7567.	5.2	61
33	InÂvitro bifidogenic effect of Maillard-type milk protein–galactose conjugates on the human intestinal microbiota. International Dairy Journal, 2013, 31, 127-131.	3.0	34
34	Neoglycoconjugates of caseinomacropeptide and galactooligosaccharides modify adhesion of intestinal pathogens and inflammatory response(s) of intestinal (Caco-2) cells. Food Research International, 2013, 54, 1096-1102.	6.2	18
35	Monomer and Linkage Type of Galacto-Oligosaccharides Affect Their Resistance to Ileal Digestion and Prebiotic Properties in Rats. Journal of Nutrition, 2012, 142, 1232-1239.	2.9	87
36	Hydrolyzed Caseinomacropeptide Conjugated Galactooligosaccharides Support the Growth and Enhance the Bile Tolerance in <i>Lactobacillus</i> Strains. Journal of Agricultural and Food Chemistry, 2012, 60, 6839-6845.	5.2	12

Oswaldo HernÃindez

#	Article	IF	CITATIONS
37	Growth and transcriptional response of Salmonella Typhimurium LT2 to glucose–lysine-based Maillard reaction products generated under low water activity conditions. Food Research International, 2012, 45, 1044-1053.	6.2	12
38	Hydrophilic interaction liquid chromatography coupled to mass spectrometry for the characterization of prebiotic galactooligosaccharides. Journal of Chromatography A, 2012, 1220, 57-67.	3.7	53
39	Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiology, 2012, 30, 355-361.	4.2	134
40	Starch determination, amylose content and susceptibility to <i>in vitro</i> amylolysis in flours from the roots of 25 cassava varieties. Journal of the Science of Food and Agriculture, 2012, 92, 673-678.	3.5	22
41	Determination of Free Inositols and Other Low Molecular Weight Carbohydrates in Vegetables. Journal of Agricultural and Food Chemistry, 2011, 59, 2451-2455.	5.2	36
42	In Vitro Fermentation by Human Gut Bacteria of Proteolytically Digested Caseinomacropeptide Nonenzymatically Glycosylated with Prebiotic Carbohydrates. Journal of Agricultural and Food Chemistry, 2011, 59, 11949-11955.	5.2	38
43	Detection of Two Minor Phosphorylation Sites for Bovine κ-Casein Macropeptide by Reversed-Phase Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2011, 59, 10848-10853.	5.2	15
44	In Vitro Fermentation of Alternansucrase Raffinose-Derived Oligosaccharides by Human Gut Bacteria. Journal of Agricultural and Food Chemistry, 2011, 59, 10901-10906.	5.2	32
45	Effect of glycation of bovine \hat{l}^2 -lactoglobulin with galactooligosaccharides on the growth of human faecal bacteria. International Dairy Journal, 2011, 21, 949-952.	3.0	13
46	Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. Journal of Chromatography A, 2011, 1218, 7697-7703.	3.7	50
47	Characterization of galactooligosaccharides derived from lactulose. Journal of Chromatography A, 2011, 1218, 7691-7696.	3.7	47
48	A derivatization procedure for the simultaneous analysis of iminosugars and other low molecular weight carbohydrates by GC–MS in mulberry (Morus sp.). Food Chemistry, 2011, 126, 353-359.	8.2	45
49	Derivatization of carbohydrates for GC and GC–MS analyses. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 1226-1240.	2.3	339
50	Development of a new method using HILICâ€ŧandem mass spectrometry for the characterization of <i>O</i> â€sialoglycopeptides from proteolytically digested caseinomacropeptide. Proteomics, 2010, 10, 3699-3711.	2.2	26
51	Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. International Dairy Journal, 2009, 19, 531-536.	3.0	115
52	In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers, 2008, 71, 648-655.	10.2	70