Jaladanki N Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5109974/publications.pdf

Version: 2024-02-01

71 papers 3,111 citations

94433 37 h-index 54 g-index

72 all docs 72 docs citations

times ranked

72

2961 citing authors

#	Article	IF	CITATIONS
1	Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. American Journal of Physiology - Cell Physiology, 2003, 285, C1174-C1187.	4.6	128
2	Polyamine Depletion Increases Cytoplasmic Levels of RNA-binding Protein HuR Leading to Stabilization of Nucleophosmin and p53 mRNAs. Journal of Biological Chemistry, 2006, 281, 19387-19394.	3.4	112
3	TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. American Journal of Physiology - Renal Physiology, 2006, 290, G782-G792.	3.4	110
4	Polyamines Regulate c-Myc Translation through Chk2-dependent HuR Phosphorylation. Molecular Biology of the Cell, 2009, 20, 4885-4898.	2.1	92
5	Ca ²⁺ -RhoA signaling pathway required for polyamine-dependent intestinal epithelial cell migration. American Journal of Physiology - Cell Physiology, 2001, 280, C993-C1007.	4.6	91
6	Activation of K ⁺ channels and increased migration of differentiated intestinal epithelial cells after wounding. American Journal of Physiology - Cell Physiology, 2002, 282, C885-C898.	4.6	91
7	miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Research, 2013, 41, 7905-7919.	14.5	90
8	Long Noncoding RNA uc.173 Promotes Renewal of the Intestinal Mucosa by Inducing Degradation of MicroRNA 195. Gastroenterology, 2018, 154, 599-611.	1.3	88
9	Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal. Molecular Biology of the Cell, 2015, 26, 1797-1810.	2.1	80
10	Long noncoding RNA <i>SPRY4-IT1</i> regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. Molecular Biology of the Cell, 2016, 27, 617-626.	2.1	80
11	Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. Nucleic Acids Research, 2011, 39, 8472-8487.	14.5	73
12	miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies. Molecular Biology of the Cell, 2012, 23, 151-162.	2.1	72
13	Polyamines Regulate the Stability of Activating Transcription Factor-2 mRNA through RNA-binding Protein HuR in Intestinal Epithelial Cells. Molecular Biology of the Cell, 2007, 18, 4579-4590.	2.1	69
14	Polyamines regulate E-cadherin transcription through c-Myc modulating intestinal epithelial barrier function. American Journal of Physiology - Cell Physiology, 2009, 296, C801-C810.	4.6	69
15	Inhibition of Smurf2 translation by miR-322/503 modulates TGF- \hat{I}^2 /Smad2 signaling and intestinal epithelial homeostasis. Molecular Biology of the Cell, 2014, 25, 1234-1243.	2.1	69
16	Interaction between HuR and <i>circPABPN1</i> Modulates Autophagy in the Intestinal Epithelium by Altering ATG16L1 Translation. Molecular and Cellular Biology, 2020, 40, .	2.3	69
17	JunD Represses Transcription and Translation of the Tight Junction Protein Zona Occludens-1 Modulating Intestinal Epithelial Barrier Function. Molecular Biology of the Cell, 2008, 19, 3701-3712.	2.1	68
18	Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines. Nucleic Acids Research, 2009, 37, 7623-7637.	14.5	68

#	Article	IF	Citations
19	miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2. Molecular Biology of the Cell, 2013, 24, 3038-3046.	2.1	64
20	Polyamines Regulate the Stability of JunD mRNA by Modulating the Competitive Binding of Its 3′ Untranslated Region to HuR and AUF1. Molecular and Cellular Biology, 2010, 30, 5021-5032.	2.3	63
21	Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines. Molecular Biology of the Cell, 2011, 22, 3055-3069.	2.1	62
22	Competitive binding of CUGBP1 and HuR to occludin mRNA controls its translation and modulates epithelial barrier function. Molecular Biology of the Cell, 2013, 24, 85-99.	2.1	62
23	Polyamines regulate \hat{I}^2 -catenin tyrosine phosphorylation via Ca ²⁺ during intestinal epithelial cell migration. American Journal of Physiology - Cell Physiology, 2002, 283, C722-C734.	4.6	60
24	Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca ²⁺ signaling by differentially modulating STIM1 and STIM2. American Journal of Physiology - Cell Physiology, 2012, 303, C308-C317.	4.6	60
25	RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway. Molecular Biology of the Cell, 2014, 25, 3308-3318.	2.1	59
26	Post-transcriptional regulation of MEK-1 by polyamines through the RNA-binding protein HuR modulating intestinal epithelial apoptosis. Biochemical Journal, 2010, 426, 293-306.	3.7	55
27	Differentiated intestinal epithelial cells exhibit increased migration through polyamines and myosin II. American Journal of Physiology - Renal Physiology, 1999, 277, G1149-G1158.	3.4	53
28	Polyamines modulate the subcellular localization of RNA-binding protein HuR through AMP-activated protein kinase-regulated phosphorylation and acetylation of importin $\hat{l}\pm 1$. Biochemical Journal, 2008, 409, 389-398.	3.7	53
29	Polyamines regulate Rho-kinase and myosin phosphorylation during intestinal epithelial restitution. American Journal of Physiology - Cell Physiology, 2003, 284, C848-C859.	4.6	51
30	Posttranscriptional Regulation of Intestinal Epithelial Tight Junction Barrier by RNA-binding Proteins and microRNAs. Tissue Barriers, 2014, 2, e28320.	3.2	50
31	Polyamine-modulated c-Myc expression in normal intestinal epithelial cells regulates p21Cip1 transcription through a proximal promoter region. Biochemical Journal, 2006, 398, 257-267.	3.7	46
32	Rac1 promotes intestinal epithelial restitution by increasing Ca ²⁺ influx through interaction with phospholipase C- \hat{l}^31 after wounding. American Journal of Physiology - Cell Physiology, 2008, 295, C1499-C1509.	4.6	46
33	Regulation of Intestinal Epithelial Barrier Function by Long Noncoding RNA <i>uc.173</i> through Interaction with MicroRNA 29b. Molecular and Cellular Biology, 2018, 38, .	2.3	46
34	Polyamines are required for phospholipase $C-\hat{l}^31$ expression promoting intestinal epithelial restitution after wounding. American Journal of Physiology - Renal Physiology, 2007, 292, G335-G343.	3.4	45
35	HuR Enhances Early Restitution of the Intestinal Epithelium by Increasing Cdc42 Translation. Molecular and Cellular Biology, 2017, 37, .	2.3	43
36	STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca ²⁺ signaling after wounding. American Journal of Physiology - Cell Physiology, 2010, 299, C579-C588.	4.6	42

#	Article	IF	Citations
37	RNA-Binding Protein HuR Regulates Paneth Cell Function by Altering Membrane Localization of TLR2 via Post-transcriptional Control of CNPY3. Gastroenterology, 2019, 157, 731-743.	1.3	42
38	Circular RNA CircHIPK3 Promotes Homeostasis of the Intestinal Epithelium by Reducing MicroRNA 29b Function. Gastroenterology, 2021, 161, 1303-1317.e3.	1.3	40
39	Induced JunD in intestinal epithelial cells represses CDK4 transcription through its proximal promoter region following polyamine depletion. Biochemical Journal, 2007, 403, 573-581.	3.7	37
40	Polyamines and Gut Mucosal Homeostasis. , 2012, 2, .		35
41	The RNA-binding protein CUG-BP1 increases survivin expression in oesophageal cancer cells through enhanced mRNA stability. Biochemical Journal, 2012, 446, 113-123.	3.7	32
42	Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology, 2020, 35, 328-337.	3.1	30
43	RhoA enhances store-operated Ca ²⁺ entry and intestinal epithelial restitution by interacting with TRPC1 after wounding. American Journal of Physiology - Renal Physiology, 2015, 309, G759-G767.	3.4	29
44	MiR-199a-3p decreases esophageal cancer cell proliferation by targeting p21 activated kinase 4. Oncotarget, 2018, 9, 28391-28407.	1.8	27
45	Caveolin-1 enhances rapid mucosal restitution by activating TRPC1-mediated Ca ²⁺ signaling. Physiological Reports, 2014, 2, e12193.	1.7	25
46	Induced TRPC1 expression increases protein phosphatase 2A sensitizing intestinal epithelial cells to apoptosis through inhibition of NF- \hat{l}^9 B activation. American Journal of Physiology - Cell Physiology, 2008, 294, C1277-C1287.	4.6	24
47	Modulation by <i>miR-29b</i> of intestinal epithelium homoeostasis through the repression of menin translation. Biochemical Journal, 2015, 465, 315-323.	3.7	24
48	Post-transcriptional regulation of Wnt co-receptor LRP6 and RNA-binding protein HuR by <i>miR-29b</i> in intestinal epithelial cells. Biochemical Journal, 2016, 473, 1641-1649.	3.7	24
49	Overexpression of miR-199a-5p decreases esophageal cancer cell proliferation through repression of mitogen-activated protein kinase kinase kinase-11 (MAP3K11). Oncotarget, 2016, 7, 8756-8770.	1.8	24
50	Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering Ca ²⁺ influx after wounding. American Journal of Physiology - Renal Physiology, 2014, 306, G650-G658.	3.4	22
51	Transgenic Expression of miR-222 Disrupts Intestinal Epithelial Regeneration by Targeting Multiple Genes Including Frizzled-7. Molecular Medicine, 2015, 21, 676-687.	4.4	22
52	Cooperative Repression of Insulin-Like Growth Factor Type 2 Receptor Translation by MicroRNA 195 and RNA-Binding Protein CUGBP1. Molecular and Cellular Biology, 2017, 37, .	2.3	22
53	<i>$\hat{l}\pm$</i> 4 Coordinates Small Intestinal Epithelium Homeostasis by Regulating Stability of HuR. Molecular and Cellular Biology, 2018, 38, .	2.3	20
54	JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2015, 308, C813-C824.	4.6	19

#	Article	IF	CITATIONS
55	MicroRNA-195 regulates Tuft cell function in the intestinal epithelium by altering translation of DCLK1. American Journal of Physiology - Cell Physiology, 2021, 320, C1042-C1054.	4.6	17
56	Polyamines inhibit the assembly of stress granules in normal intestinal epithelial cells regulating apoptosis. American Journal of Physiology - Cell Physiology, 2012, 303, C102-C111.	4.6	15
57	c-Jun enhances intestinal epithelial restitution after wounding by increasing phospholipase C-Î ³ 1 transcription. American Journal of Physiology - Cell Physiology, 2017, 312, C367-C375.	4.6	14
58	\hat{l}^2 -PIX plays an important role in regulation of intestinal epithelial restitution by interacting with GIT1 and Rac1 after wounding. American Journal of Physiology - Renal Physiology, 2018, 314, G399-G407.	3.4	12
59	HuR/Cx40 downregulation causes coronary microvascular dysfunction in type 2 diabetes. JCI Insight, 2021, 6, .	5.0	11
60	RNA-Binding Protein HuR Regulates Rac1 Nucleocytoplasmic Shuttling Through Nucleophosmin in the Intestinal Epithelium. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 475-486.	4.5	10
61	<i>Jnk2</i> deletion disrupts intestinal mucosal homeostasis and maturation by differentially modulating RNA-binding proteins HuR and CUGBP1. American Journal of Physiology - Cell Physiology, 2014, 306, C1167-C1175.	4.6	9
62	miR-222 represses expression of zipcode binding protein-1 and phospholipase $C-\hat{l}^31$ in intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2019, 316, C415-C423.	4.6	8
63	RNA-binding protein HuR regulates translation of vitamin D receptor modulating rapid epithelial restitution after wounding. American Journal of Physiology - Cell Physiology, 2020, 319, C208-C217.	4.6	8
64	RNA-binding proteins and long noncoding RNAs in intestinal epithelial autophagy and barrier function. Tissue Barriers, 2021, 9, 1895648.	3.2	8
65	Posttranscriptional regulation of 14-3-3î¶by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding. Physiological Reports, 2016, 4, e12858.	1.7	6
66	miR-195 regulates intestinal epithelial restitution after wounding by altering actin-related protein-2 translation. American Journal of Physiology - Cell Physiology, 2022, 322, C712-C722.	4.6	5
67	Transcriptional regulation of importin- $\hat{l}\pm$ ₁ by JunD modulates subcellular localization of RNA-binding protein HuR in intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2016, 311, C874-C883.	4.6	4
68	Regulation of Gut Barrier Function by RNA-Binding Proteins and Noncoding RNAs., 2022, , 194-213.		4
69	TRPC1â€mediated Ca ²⁺ signaling enhances intestinal epithelial restitution by increasing α4 association with PP2Ac after wounding. Physiological Reports, 2021, 9, e14864.	1.7	3
70	Caveolinâ€1 Phosphorylation by Src Kinase Regulates Epithelial Restitution by Altering Storeâ€Operated Ca 2+ Influx. FASEB Journal, 2012, 26, 1157.3.	0.5	0
71	miRâ€29b Regulates Intestinal Epithelium Homeostasis by Modulating Wnt Coâ€receptor LRP6 Translation. FASEB Journal, 2015, 29, 851.1.	0.5	0