
David G Schatz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5109616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The V(D)J recombination activating gene, RAG-1. Cell, 1989, 59, 1035-1048.	28.9	1,096
2	Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature, 1998, 394, 744-751.	27.8	743
3	The RAG Proteins and V(D)J Recombination: Complexes, Ends, and Transposition. Annual Review of Immunology, 2000, 18, 495-527.	21.8	571
4	Two levels of protection for the B cell genome during somatic hypermutation. Nature, 2008, 451, 841-845.	27.8	524
5	Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology, 2011, 11, 251-263.	22.7	486
6	V(D)J Recombination: Mechanisms of Initiation. Annual Review of Genetics, 2011, 45, 167-202.	7.6	446
7	Genomic landscape of cutaneous T cell lymphoma. Nature Genetics, 2015, 47, 1011-1019.	21.4	347
8	Down-regulation of RAG1 and RAG2 gene expression in PreB cells after functional immunoglobulin heavy chain rearrangement. Immunity, 1995, 3, 601-608.	14.3	345
9	Targeting of somatic hypermutation. Nature Reviews Immunology, 2006, 6, 573-583.	22.7	298
10	RAG1 and RAG2 Form a Stable Postcleavage Synaptic Complex with DNA Containing Signal Ends in V(D)J Recombination. Cell, 1997, 89, 43-53.	28.9	281
11	The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell, 1991, 64, 189-200.	28.9	279
12	The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci. Cell, 2010, 141, 419-431.	28.9	257
13	Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature, 2000, 408, 216-221.	27.8	250
14	Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature, 1996, 380, 85-88.	27.8	223
15	A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature, 2011, 476, 467-471.	27.8	217
16	Somatic Hypermutation of Immunoglobulin Genes. Cell, 2002, 109, S35-S44.	28.9	201
17	RAG1 Mediates Signal Sequence Recognition and Recruitment of RAG2 in V(D)J Recombination. Cell, 1996, 87, 253-262.	28.9	192
18	Defective DNA Repair and Increased Genomic Instability in Artemis-deficient Murine Cells. Journal of Experimental Medicine, 2003, 197, 553-565.	8.5	178

#	Article	IF	CITATIONS
19	Balancing AID and DNA repair during somatic hypermutation. Trends in Immunology, 2009, 30, 173-181.	6.8	178
20	Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell, 2016, 166, 102-114.	28.9	170
21	Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell, 1988, 53, 107-115.	28.9	167
22	Factors and Forces Controlling V(D)J Recombination. Advances in Immunology, 2001, 78, 169-232.	2.2	164
23	Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology, 2015, 16, 766-774.	14.5	163
24	Identification of Two Catalytic Residues in RAG1 that Define a Single Active Site within the RAG1/RAG2 Protein Complex. Molecular Cell, 2000, 5, 97-107.	9.7	151
25	The RAG Recombinase Dictates Functional Heterogeneity and Cellular Fitness in Natural Killer Cells. Cell, 2014, 159, 94-107.	28.9	147
26	Pax5 is required for recombination of transcribed, acetylated, 5' IgH V gene segments. Genes and Development, 2003, 17, 37-42.	5.9	141
27	Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes. Cell, 2015, 163, 947-959.	28.9	140
28	Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nature Structural Biology, 1997, 4, 586-591.	9.7	138
29	Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell, 1991, 64, 201-208.	28.9	134
30	RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunology, 2009, 10, 655-664.	14.5	130
31	V(D)J recombination. Immunological Reviews, 2004, 200, 5-11.	6.0	118
32	In-frame TCR δgene rearrangements play a critical role in the αβ/γδT cell lineage decision. Immunity, 1995, 2, 617-627.	14.3	113
33	B cell–specific loss of histone 3 lysine 9 methylation in the VH locus depends on Pax5. Nature Immunology, 2004, 5, 853-861.	14.5	113
34	DNA Hairpin Opening Mediated by the RAG1 and RAG2 Proteins. Molecular and Cellular Biology, 1999, 19, 4159-4166.	2.3	107
35	The Activation-induced Deaminase Functions in a Postcleavage Step of the Somatic Hypermutation Process. Journal of Experimental Medicine, 2002, 195, 1193-1198.	8.5	106
36	Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nature Immunology, 2011, 12, 70-76.	14.5	106

#	Article	IF	CITATIONS
37	A Zinc-binding Domain Involved in the Dimerization of RAG1. Journal of Molecular Biology, 1996, 260, 70-84.	4.2	104
38	[19] cDNA representational difference analysis: A sensitive and flexible method for identification of differentially expressed genes. Methods in Enzymology, 1999, 303, 325-349.	1.0	102
39	Transposon molecular domestication and the evolution of the RAG recombinase. Nature, 2019, 569, 79-84.	27.8	100
40	RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell, 2015, 162, 751-765.	28.9	98
41	Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science, 2021, 373, 1142-1146.	12.6	91
42	Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to SÂ in Ig class switch recombination. International Immunology, 2004, 16, 549-557.	4.0	88
43	New insights into the evolutionary origins of the recombinationâ€activating gene proteins and V(D)J recombination. FEBS Journal, 2017, 284, 1590-1605.	4.7	86
44	Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone, 2009, 44, 537-546.	2.9	81
45	Rearranging Views on Neurogenesis. Neuron, 1999, 22, 7-10.	8.1	78
46	Antigen receptor genes and the evolution of a recombinase. Seminars in Immunology, 2004, 16, 245-256.	5.6	78
47	Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis. Nature Structural and Molecular Biology, 2009, 16, 499-508.	8.2	77
48	Expression of activation-induced cytidine deaminase is regulated by cell division, providing a mechanistic basis for division-linked class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13242-13247.	7.1	76
49	Detection of RAG Protein-V(D)J Recombination Signal Interactions Near the Site of DNA Cleavage by UV Cross-Linking. Molecular and Cellular Biology, 1999, 19, 3788-3797.	2.3	72
50	Regulation and Evolution of the RAG Recombinase. Advances in Immunology, 2015, 128, 1-39.	2.2	70
51	Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes and Development, 2002, 16, 1934-1949.	5.9	68
52	Histone Modifications Associated with Somatic Hypermutation. Immunity, 2005, 23, 101-110.	14.3	68
53	A Functional Analysis of the Spacer of V(D)J Recombination Signal Sequences. PLoS Biology, 2003, 1, e1.	5.6	67
54	ldentification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nature Immunology, 2004, 5, 1117-1123.	14.5	67

#	Article	IF	CITATIONS
55	Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination. Journal of Experimental Medicine, 2010, 207, 2809-2816.	8.5	65
56	TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the <i>Aicda</i> superenhancer. Science Immunology, 2019, 4, .	11.9	65
57	Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO Journal, 2003, 22, 1922-1930.	7.8	64
58	Sin1-mTORC2 Suppresses rag and il7r Gene Expression through Akt2 in B Cells. Molecular Cell, 2010, 39, 433-443.	9.7	64
59	Extrachromosomal Recombination Substrates Recapitulate beyond 12/23 Restricted V(D)J Recombination in Nonlymphoid Cells. Immunity, 2003, 18, 65-74.	14.3	62
60	B cells and osteoblast and osteoclast development. Immunological Reviews, 2005, 208, 141-153.	6.0	61
61	Pax5-Deficient Mice Exhibit Early Onset Osteopenia with Increased Osteoclast Progenitors. Journal of Immunology, 2004, 173, 6583-6591.	0.8	57
62	Biochemistry of V(D)J Recombination. , 2005, 290, 49-85.		56
63	Coding Joint Formation in a Cell-Free V(D)J Recombination System. Immunity, 1997, 7, 303-314.	14.3	55
64	Strand-Biased Spreading of Mutations During Somatic Hypermutation. Science, 2007, 317, 1227-1230.	12.6	53
65	Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. Journal of Experimental Medicine, 2006, 203, 2919-2928.	8.5	52
66	Targeting Of Somatic Hypermutation By immunoglobulin Enhancer And Enhancer-Like Sequences. PLoS Biology, 2014, 12, e1001831.	5.6	51
67	Genetic Modulation of T Cell Receptor Gene Segment Usage during Somatic Recombination. Journal of Experimental Medicine, 2000, 192, 1191-1196.	8.5	49
68	Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo. Molecular and Cellular Biology, 2006, 26, 1558-1568.	2.3	49
69	αβ Lineage-committed thymocytes can be rescued by the γδT cell receptor (TCR) in the absence of TCR β chain. European Journal of Immunology, 1997, 27, 2948-2958.	2.9	48
70	Up-Regulation of Hlx in Immature Th Cells Induces IFN-Î ³ Expression. Journal of Immunology, 2004, 172, 114-122.	0.8	47
71	Identification of Basic Residues in RAG2 Critical for DNA Binding by the RAG1-RAG2 Complex. Molecular Cell, 2001, 8, 899-910.	9.7	46
72	Dendritic cell–mediated activation-induced cytidine deaminase (AID)–dependent induction of genomic instability in human myeloma. Blood, 2012, 119, 2302-2309.	1.4	45

#	Article	IF	CITATIONS
73	Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies. Blood, 2016, 128, 783-793.	1.4	45
74	Roles of the Ig κ Light Chain Intronic and 3′ Enhancers in <i>Igk</i> Somatic Hypermutation. Journal of Immunology, 2006, 177, 1146-1151.	0.8	44
75	Leaky severe combined immunodeficiency and aberrant DNA rearrangements due to a hypomorphic RAG1 mutation. Blood, 2009, 113, 2965-2975.	1.4	42
76	Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions. Nature Immunology, 2012, 13, 1205-1212.	14.5	42
77	The Ataxia Telangiectasia mutated kinase controls Igîº allelic exclusion by inhibiting secondary <i>Vκ</i> -to- <i>Jκ</i> rearrangements. Journal of Experimental Medicine, 2013, 210, 233-239.	8.5	42
78	Identification of V(D)J recombination coding end intermediates in normal thymocytes. Journal of Molecular Biology, 1997, 267, 1-9.	4.2	41
79	V(D)J recombination movesin vitro. Seminars in Immunology, 1997, 9, 149-159.	5.6	41
80	Higher-Order Looping and Nuclear Organization of Tcra Facilitate Targeted RAG Cleavage and Regulated Rearrangement in Recombination Centers. Cell Reports, 2013, 3, 359-370.	6.4	40
81	DNA melting initiates the RAG catalytic pathway. Nature Structural and Molecular Biology, 2018, 25, 732-742.	8.2	40
82	Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA. Nucleic Acids Research, 2013, 41, 3289-3301.	14.5	38
83	Histone reader BRWD1 targets and restricts recombination to the Igk locus. Nature Immunology, 2015, 16, 1094-1103.	14.5	37
84	Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes and Development, 2016, 30, 909-917.	5.9	37
85	Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Reports, 2019, 29, 3902-3915.e8.	6.4	33
86	Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes. Journal of Immunology, 2013, 190, 3878-3888.	0.8	32
87	Uncovering the V(D)J recombinase. Cell, 2004, 116, S103-S108.	28.9	31
88	Structures of a RAG-like transposase during cut-and-paste transposition. Nature, 2019, 575, 540-544.	27.8	30
89	Structural insights into the evolution of the RAG recombinase. Nature Reviews Immunology, 2022, 22, 353-370.	22.7	30
90	DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Research, 2003, 31, 6180-6190.	14.5	29

#	Article	IF	CITATIONS
91	RAG1-DNA Binding in V(D)J Recombination. Journal of Biological Chemistry, 2003, 278, 5584-5596.	3.4	29
92	Role of Activation-Induced Deaminase Protein Kinase A Phosphorylation Sites in Ig Gene Conversion and Somatic Hypermutation. Journal of Immunology, 2007, 179, 5274-5280.	0.8	29
93	Developmental neurobiology: Alternative ends for a familiar story?. Current Biology, 1999, 9, R251-R253.	3.9	28
94	The Beyond 12/23 Restriction Is Imposed at the Nicking and Pairing Steps of DNA Cleavage during V(D)J Recombination. Molecular and Cellular Biology, 2007, 27, 6288-6299.	2.3	27
95	Peripheral subnuclear positioning suppresses <i>Tcrb</i> recombination and segregates <i>Tcrb</i> alleles from RAG2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4628-37.	7.1	27
96	Identification of Core DNA Elements That Target Somatic Hypermutation. Journal of Immunology, 2012, 189, 5314-5326.	0.8	26
97	Mutational Analysis of Terminal Deoxynucleotidyltransferase- Mediated N-Nucleotide Addition in V(D)J Recombination. Journal of Immunology, 2004, 172, 5478-5488.	0.8	25
98	Targeting of AIDâ€Mediated Sequence Diversification by cisâ€Acting Determinants. Advances in Immunology, 2007, 94, 109-125.	2.2	25
99	Structural visualization of transcription activated by a multidrug-sensing MerR family regulator. Nature Communications, 2021, 12, 2702.	12.8	25
100	Origins of peripheral B cells in IL-7 receptor-deficient mice. Molecular Immunology, 2006, 43, 326-334.	2.2	24
101	Immature Lymphocytes Inhibit <i>Rag1</i> and <i>Rag2</i> Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. Journal of Immunology, 2017, 198, 2943-2956.	0.8	24
102	Radiosensitization of MDA-MB-231 breast tumor cells by adenovirus-mediated overexpression of a fragment of the XRCC4 protein. Molecular Cancer Therapeutics, 2005, 4, 1541-1547.	4.1	23
103	RAG and HMGB1 create a large bend in the 23RSS in the V(D)J recombination synaptic complexes. Nucleic Acids Research, 2013, 41, 2437-2454.	14.5	23
104	IMMUNOLOGY: One AID to Unite Them All. Science, 2002, 295, 1244-1245.	12.6	22
105	A Dual Interaction between the DNA Damage Response Protein MDC1 and the RAG1 Subunit of the V(D)J Recombinase. Journal of Biological Chemistry, 2012, 287, 36488-36498.	3.4	22
106	Nucleolar localization of RAG1 modulates V(D)J recombination activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4300-4309.	7.1	22
107	New concepts in the regulation of an ancient reaction: transposition by RAG1/RAG2. Immunological Reviews, 2004, 200, 261-271.	6.0	21
108	Synapsis Alters RAG-Mediated Nicking at <i>Tcrb</i> Recombination Signal Sequences: Implications for the "Beyond 12/23―Rule. Molecular and Cellular Biology, 2014, 34, 2566-2580.	2.3	21

#	Article	IF	CITATIONS
109	Single-molecule analysis of RAG-mediated V(D)J DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1715-23.	7.1	20
110	AID and Igh switch region-Myc chromosomal translocations. DNA Repair, 2006, 5, 1259-1264.	2.8	19
111	RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2. Nucleic Acids Research, 2016, 44, gkw633.	14.5	19
112	Identification of RAC-like transposons in protostomes suggests their ancient bilaterian origin. Mobile DNA, 2020, 11, 17.	3.6	19
113	Transposition mediated by RAG1 and RAG2 and the evolution of the adaptive immune system. Immunologic Research, 1999, 19, 169-182.	2.9	18
114	Non-redundancy of cytidine deaminases in class switch recombination. European Journal of Immunology, 2004, 34, 844-849.	2.9	18
115	Mapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2. Journal of Biological Chemistry, 2015, 290, 11802-11817.	3.4	18
116	HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes and Development, 2022, 36, 433-450.	5.9	17
117	Intermolecular V(D)J Recombination. Journal of Biological Chemistry, 2000, 275, 8341-8348.	3.4	16
118	RNA AIDs DNA. Nature Immunology, 2003, 4, 429-430.	14.5	16
119	Fluorescence Resonance Energy Transfer Analysis of Recombination Signal Sequence Configuration in the RAG1/2 Synaptic Complex. Molecular and Cellular Biology, 2007, 27, 4745-4758.	2.3	16
120	Synapsis of Recombination Signal Sequences Located in cis and DNA Underwinding in V(D)J Recombination. Molecular and Cellular Biology, 2004, 24, 8727-8744.	2.3	15
121	A Critical Context-Dependent Role for E Boxes in the Targeting of Somatic Hypermutation. Journal of Immunology, 2013, 191, 1556-1566.	0.8	15
122	RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports, 2021, 37, 109824.	6.4	14
123	The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination. Journal of Experimental Medicine, 2021, 218, .	8.5	13
124	Ig Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences. Journal of Immunology, 2022, 208, 143-154.	0.8	13
125	Transcription factor binding at Ig enhancers is linked to somatic hypermutation targeting. European Journal of Immunology, 2020, 50, 380-395.	2.9	12
126	The architecture of the 12RSS in V(D)J recombination signal and synaptic complexes. Nucleic Acids Research, 2015, 43, 917-931.	14.5	11

#	Article	IF	CITATIONS
127	Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID. Journal of Clinical Investigation, 2020, 130, 4411-4422.	8.2	11
128	Imatinib Resistance and Progression of CML to Blast Crisis: Somatic Hypermutation AlDing the Way. Cancer Cell, 2009, 16, 174-176.	16.8	10
129	Spatio-temporal regulation of RAG2 following genotoxic stress. DNA Repair, 2015, 27, 19-27.	2.8	10
130	IMMUNOLOGY: UNGstoppable Switching. Science, 2004, 305, 1113-1114.	12.6	9
131	The Mechanism of V(D)J Recombination. , 2015, , 13-34.		9
132	Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire. Cell Reports, 2019, 29, 4471-4481.e6.	6.4	9
133	Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells. PLoS ONE, 2016, 11, e0149146.	2.5	9
134	Developing B-cell theories. Nature, 1999, 400, 615-617.	27.8	8
135	Super-Enhancer Transcription Converges on AID. Cell, 2014, 159, 1490-1492.	28.9	8
136	Sequence-dependent dynamics of synthetic and endogenous RSSs in V(D)J recombination. Nucleic Acids Research, 2020, 48, 6726-6739.	14.5	8
137	Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination. Journal of Experimental Medicine, 2021, 218, .	8.5	8
138	Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. EMBO Journal, 2020, 39, e105857.	7.8	8
139	Location, location, location: the cell biology of immunoglobulin allelic control. Nature Immunology, 2001, 2, 825-826.	14.5	7
140	Activation-induced Cytidine Deaminase-mediated Sequence Diversification Is Transiently Targeted to Newly Integrated DNA Substrates. Journal of Biological Chemistry, 2007, 282, 25308-25313.	3.4	6
141	DNA deaminases converge on adaptive immunity. Nature Immunology, 2007, 8, 551-553.	14.5	6
142	Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination. Molecular and Cellular Biology, 2015, 35, 3701-3713.	2.3	6
143	AID-Targeting and Hypermutation of Non-Immunoglobulin Genes Does Not Correlate with Proximity to Immunoglobulin Genes in Germinal Center B Cells. PLoS ONE, 2012, 7, e39601.	2.5	5
144	Partial reconstitution of V(D)J rearrangement and lymphocyte development in RAG-deficient mice expressing inducible, tetracycline-regulated RAG transgenes. Molecular Immunology, 2004, 40, 813-829.	2.2	4

#	Article	IF	CITATIONS
145	rag-1 and rag-2: Biochemistry and Protein Interactions. Current Topics in Microbiology and Immunology, 1996, 217, 11-29.	1.1	4
146	Induction of homologous recombination between sequence repeats by the activation induced cytidine deaminase (AID) protein. ELife, 2014, 3, e03110.	6.0	4
147	Inducible, reversible hair loss in transgenic mice. Transgenic Research, 2002, 11, 241-247.	2.4	3
148	Charles A. Janeway, Jr. (1943-2003). Cell, 2003, 113, 433-434.	28.9	2
149	Response to 'Amplifying Igh translocations'. Nature Immunology, 2005, 6, 118-118.	14.5	2
150	Recombination activating gene-1 (RAG-1) transcription in the mammalian CNS. , 1993, , 283-295.		2
151	A Future Outlook on Molecular Mechanisms of Immunity. Trends in Immunology, 2020, 41, 549-555.	6.8	1
152	Making ends meet in class switch recombination. Cell Research, 2020, 30, 711-712.	12.0	1
153	A Role for Small RNA Molecules during the DNA Repair Phase of Somatic Hypermutation. Blood, 2008, 112, 785-785.	1.4	1
154	Charles A. Janeway, Jr. (1943-2003). Immunity, 2003, 18, 591-592.	14.3	0
155	Understanding the spread of mutations during somatic hypermutation. FASEB Journal, 2008, 22, 849.3.	0.5	0
156	Negative Regulation of Activation-Induced Cytidine Deaminase Protein Prevents Aberrant Somatic Hypermutation and Lymphomagenesis Blood, 2009, 114, 94-94.	1.4	0
157	The Role of RAG in V(D)J Recombination. , 2016, , 99-106.		Ο