Lars Ingo Ole Leichert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5108568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying changes in the thiol redox proteome upon oxidative stress <i>in vivo</i> . Proceedings of the United States of America, 2008, 105, 8197-8202.	7.1	477
2	Proteomic Approach to Understanding Antibiotic Action. Antimicrobial Agents and Chemotherapy, 2003, 47, 948-955.	3.2	268
3	Protein Thiol Modifications Visualized In Vivo. PLoS Biology, 2004, 2, e333.	5.6	207
4	Global Characterization of Disulfide Stress in Bacillus subtilis. Journal of Bacteriology, 2003, 185, 1967-1975.	2.2	161
5	Allicin Induces Thiol Stress in Bacteria through S-Allylmercapto Modification of Protein Cysteines. Journal of Biological Chemistry, 2016, 291, 11477-11490.	3.4	116
6	The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cellular and Molecular Life Sciences, 2021, 78, 385-414.	5.4	109
7	Using Quantitative Redox Proteomics to Dissect the Yeast Redoxome. Journal of Biological Chemistry, 2011, 286, 41893-41903.	3.4	105
8	Global Methods to Monitor the Thiol–Disulfide State of Proteins In Vivo. Antioxidants and Redox Signaling, 2006, 8, 763-772.	5.4	89
9	Activation of RidA chaperone function by N-chlorination. Nature Communications, 2014, 5, 5804.	12.8	70
10	Heme Regulatory Motifs in Heme Oxygenase-2 Form a Thiol/Disulfide Redox Switch That Responds to the Cellular Redox State. Journal of Biological Chemistry, 2009, 284, 20556-20561.	3.4	68
11	Small RNAâ€mediated control of the <i>Agrobacterium tumefaciens</i> GABA binding protein. Molecular Microbiology, 2011, 80, 492-506.	2.5	65
12	A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds. Journal Physics D: Applied Physics, 2015, 48, 494003.	2.8	65
13	Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria. International Journal of Medical Microbiology, 2020, 310, 151359.	3.6	60
14	The Sulfur Carrier Protein TusA Has a Pleiotropic Role in Escherichia coli That Also Affects Molybdenum Cofactor Biosynthesis*. Journal of Biological Chemistry, 2013, 288, 5426-5442.	3.4	54
15	Nitrosative stress treatment of E.Âcoli targets distinct set of thiol-containing proteins. Molecular Microbiology, 2007, 66, 901-914.	2.5	48
16	Incidence and physiological relevance of protein thiol switches. Biological Chemistry, 2015, 396, 389-399.	2.5	48
17	Neutrophil-generated HOCl leads to non-specific thiol oxidation in phagocytized bacteria. ELife, 2018, 7, .	6.0	47
18	Does the Transcription Factor NemR Use a Regulatory Sulfenamide Bond to Sense Bleach?. Antioxidants and Redox Signaling, 2015, 23, 747-754.	5.4	45

#	Article	IF	CITATIONS
19	Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1. Microbiology (United Kingdom), 2015, 161, 593-610.	1.8	42
20	Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species. Free Radical Biology and Medicine, 2017, 106, 329-338.	2.9	42
21	Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24545-24556.	7.1	37
22	Quantitative Redox Proteomics: The NOxICAT Method. Methods in Molecular Biology, 2012, 893, 387-403.	0.9	30
23	The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation. Journal of the Royal Society Interface, 2019, 16, 20180966.	3.4	30
24	Redox Proteomics Uncovers Peroxynitrite-sensitive Proteins That Help Escherichia coli to Overcome Nitrosative Stress. Journal of Biological Chemistry, 2013, 288, 19698-19714.	3.4	29
25	Nonnative Disulfide Bond Formation Activates the Ï f 32 -Dependent Heat Shock Response in Escherichia coli. Journal of Bacteriology, 2013, 195, 2807-2816.	2.2	28
26	Quantifying changes in the bacterial thiol redox proteome during host-pathogen interaction. Redox Biology, 2019, 21, 101087.	9.0	27
27	Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	23
28	CpeS Is a Lyase Specific for Attachment of 3Z-PEB to Cys82 of β-phycoerythrin from Prochlorococcus marinus MED4. Journal of Biological Chemistry, 2010, 285, 37561-37569.	3.4	22
29	Oxidant sensor in the cGMP-binding pocket of PKGIα regulates nitroxyl-mediated kinase activity. Scientific Reports, 2017, 7, 9938.	3.3	22
30	Simple discovery of bacterial biocatalysts from environmental samples through functional metaproteomics. Microbiome, 2017, 5, 28.	11.1	20
31	N-chlorination mediates protective and immunomodulatory effects of oxidized human plasma proteins. ELife, 2019, 8, .	6.0	20
32	Extracting iron and manganese from bacteria with ionophores—A mechanism against competitors characterized by increased potency in environments low in micronutrients. Proteomics, 2013, 13, 1358-1370.	2.2	19
33	A combined bioinformatics and functional metagenomics approach to discovering lipolytic biocatalysts. Frontiers in Microbiology, 2015, 6, 1110.	3.5	19
34	In silico approach to designing rational metagenomic libraries for functional studies. BMC Bioinformatics, 2017, 18, 267.	2.6	19
35	Redox regulation in host-pathogen interactions: thiol switches and beyond. Biological Chemistry, 2021, 402, 299-316.	2.5	19
36	The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo. Redox Biology, 2018, 17, 200-206.	9.0	18

#	Article	IF	CITATIONS
37	Utilizing redox-sensitive GFP fusions to detect in vivo redox changes in a genetically engineered prokaryote. Redox Biology, 2019, 26, 101280.	9.0	16
38	The Interplay between S-Clutathionylation and Phosphorylation of Cardiac Troponin I and Myosin Binding Protein C in End-Stage Human Failing Hearts. Antioxidants, 2021, 10, 1134.	5.1	16
39	Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen. Microbiology (United) Tj ETQq1 1 0	.78 148 14 rg	gBIdOverloci
40	Activation leads to a significant shift in the intracellular redox homeostasis of neutrophil-like cells. Redox Biology, 2020, 28, 101344.	9.0	15
41	Redox, haem and CO in enzymatic catalysis and regulation. Biochemical Society Transactions, 2012, 40, 501-507.	3.4	13
42	Hypochlorous acid-modified human serum albumin suppresses MHC class II - dependent antigen presentation in pro-inflammatory macrophages. Redox Biology, 2021, 43, 101981.	9.0	13
43	About the dangers, costs and benefits of living an aerobic lifestyle. Biochemical Society Transactions, 2014, 42, 917-921.	3.4	12
44	Loss of a conserved salt bridge in bacterial glycosyl hydrolase BgIM-G1 improves substrate binding in temperate environments. Communications Biology, 2018, 1, 171.	4.4	12
45	Antimicrobial properties of ternary eutectic aluminum alloys. BioMetals, 2018, 31, 759-770.	4.1	9
46	A highly conserved redox-active Mx(2)CWx(6)R motif regulates Zap70 stability and activity. Oncotarget, 2017, 8, 30805-30816.	1.8	9
47	CoSMoS: Conserved Sequence Motif Search in the proteome. BMC Bioinformatics, 2006, 7, 37.	2.6	8
48	Functional metagenomics of the thioredoxin superfamily. Journal of Biological Chemistry, 2021, 296, 100247.	3.4	7
49	Proteomic methods unravel the protein quality control in <i>Escherichia coli</i> . Proteomics, 2011, 11, 3023-3035.	2.2	6
50	Sterilization of beehive material with a double inductively coupled low pressure plasma. Journal Physics D: Applied Physics, 2016, 49, 374002.	2.8	6
51	Characterization of ML-005, a Novel Metaproteomics-Derived Esterase. Frontiers in Microbiology, 2018, 9, 1925.	3.5	6
52	Fluorescence spectroscopy of roGFP2-based redox probes responding to various physiologically relevant oxidant species in vitro. Data in Brief, 2017, 11, 617-627.	1.0	5
53	Defects in Mitochondrial Iron–Sulfur Cluster Assembly Induce Cysteine S-Polythiolation on Iron–Sulfur Apoproteins. Antioxidants and Redox Signaling, 2016, 25, 28-40.	5.4	4
54	Metaproteomic Discovery and Characterization of a Novel Lipolytic Enzyme From an Indian Hot Spring. Frontiers in Microbiology, 2021, 12, 672727.	3.5	4

#	Article	IF	CITATIONS
55	Redox Proteomics. , 2013, , 157-186.		3
56	An increase in surface hydrophobicity mediates chaperone activity in N-chlorinated RidA. Redox Biology, 2022, , 102332.	9.0	3
57	Thiol-based redox processes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1333-1334.	2.3	1
58	Oxidative Stress Regulates Titin Elasticity by Affecting Ig-Domain Stability. Biophysical Journal, 2015, 108, 444a.	0.5	0
59	Nâ€chlorination, a Reversible Postâ€translational Modification That Activates Chaperone Function in RidA. FASEB Journal, 2015, 29, 717.3.	0.5	0
60	Global approaches for protein thiol redox state detection and quantification. , 2022, , 81-98.		0