Wojciech Plader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5108353/publications.pdf

Version: 2024-02-01

		759233	677142
38	507	12	22
papers	citations	h-index	g-index
39	39	39	578
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	miRNA Profiling and Its Role in Multi-Omics Regulatory Networks Connected with Somaclonal Variation in Cucumber (Cucumis sativus L.). International Journal of Molecular Sciences, 2022, 23, 4317.	4.1	4
2	Molecular insight into somaclonal variation phenomena from transcriptome profiling of cucumber (Cucumis sativus L.) lines. Plant Cell, Tissue and Organ Culture, 2021, 145, 239-259.	2.3	14
3	Influence of transgenesis on genome variability in cucumber lines with aÂthaumatin II gene. Physiology and Molecular Biology of Plants, 2021, 27, 985-996.	3.1	1
4	A high-quality cucumber genome assembly enhances computational comparative genomics. Molecular Genetics and Genomics, 2020, 295, 177-193.	2.1	30
5	Genome-wide discovery of DNA variants in cucumber somaclonal lines. Gene, 2020, 736, 144412.	2.2	10
6	Characterization of Lebanese Germplasm of Snake Melon (Cucumis melo subsp. melo var. flexuosus) Using Morphological Traits and SSR Markers. Agronomy, 2020, 10, 1293.	3.0	12
7	Effect of Transgenesis on mRNA and miRNA Profiles in Cucumber Fruits Expressing Thaumatin II. Genes, 2020, 11, 334.	2.4	7
8	Genetic and molecular bases of cucumber (Cucumis sativus L.) sex determination. Molecular Breeding, 2019, 39, 1.	2.1	34
9	Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. Plant Reproduction, 2019, 32, 193-216.	2.2	25
10	Biological significance, computational analysis, and applications of plant microRNAs. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	7
11	The construction of genomic libraries in BAC and its practical application and bioinformatic usage. , 2018, , .		O
12	Application of bioinformatics techniques for protein interaction analysis. , 2018, , .		0
13	Comparison of bioinformatics programs for analysis of single nucleotide variants. , 2018, , .		О
14	Comparison of de novo assembly statistics of Cucumis sativus L , 2017, , .		1
15	Assembly of cucumber (Cucumis sativus L.) somaclones. , 2017, , .		1
16	Detection of genomic rearrangements in cucumber using genomecmp software. Proceedings of SPIE, 2017, , .	0.8	0
17	Bioinformatics and expressional analysis of cDNA clones from floral buds. Proceedings of SPIE, 2017, ,	0.8	1
18	Laser capture microdissection to study flower morphogenesis. Proceedings of SPIE, 2017, , .	0.8	1

#	Article	IF	CITATIONS
19	Bioinformatic investigation of the role of ubiquitins in cucumber flower morphogenesis. Proceedings of SPIE, 2016, , .	0.8	1
20	Identification and bioinformatics comparison of two novel phosphatases in monoecious and gynoecious cucumber lines. Proceedings of SPIE, 2016, , .	0.8	4
21	The utility of optical detection system (qPCR) and bioinformatics methods in reference gene expression analysis. Proceedings of SPIE, 2016, , .	0.8	3
22	Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research. Plant Science, 2016, 242, 77-88.	3.6	35
23	Advantages and disadvantages in usage of bioinformatic programs in promoter region analysis. Proceedings of SPIE, 2015, , .	0.8	1
24	Molecular Cytogenetic Analysis of <i>Cucumis</i> Wild Species Distributed in Southern Africa: Physical Mapping of 5S and 45S rDNA with DAPI. Cytogenetic and Genome Research, 2015, 146, 80-87.	1.1	10
25	Bioinformatics pipeline for functional identification and characterization of proteins. Proceedings of SPIE, 2015, , .	0.8	O
26	Karyotype Analysis and Chromosomal Distribution of Repetitive DNA Sequences of & lt;b> <i>Cucumis metuliferus</i> Using Fluorescence in situ Hybridization. Cytogenetic and Genome Research, 2014, 144, 237-242.	1.1	8
27	A Comparative Study of the Three Cucumber Cultivars Using Fluorescent Staining and Fluorescence In Situ Hybridization. Cytologia, 2011, 76, 3-10.	0.6	7
28	A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants. Plant Methods, $2011, 7, 29$.	4.3	14
29	The Genome Sequence of the North-European Cucumber (Cucumis sativus L.) Unravels Evolutionary Adaptation Mechanisms in Plants. PLoS ONE, 2011, 6, e22728.	2.5	112
30	Cytogenetic comparison among three cultivars of cucumber (Cucumis sativus L.) by using post-heated DAPI band, 45S and 5S rDNA sites. Chromosome Botany, 2009, 4, 19-23.	0.2	8
31	Cucumber, melon, pumpkin, and squash: Are rules of editing in flowering plants chloroplast genes so well known indeed?. Gene, 2009, 434, 1-8.	2.2	25
32	Chromosomal Polymorphism of Two Pickling Cucumbers (Cucumis sativus L.) Revealed by Fluorescent Staining with CMA and DAPI. Cytologia, 2008, 73, 41-48.	0.6	11
33	The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: Its composition and comparative analysis. Cellular and Molecular Biology Letters, 2007, 12, 584-94.	7.0	41
34	Chloroplast transformation reveals that tobacco ycf5 is involved in photosynthesis. Acta Physiologiae Plantarum, 2006, 28, 365-372.	2.1	5
35	The metabolic profiles of transgenic cucumber lines vary with different chromosomal locations of the transgene. Cellular and Molecular Biology Letters, 2005, 10, 697-710.	7.0	15
36	Xyloglucan endotransglucosylase/hydrolase genes in cucumber (Cucumis sativus) - differential expression during somatic embryogenesis+. Physiologia Plantarum, 2004, 120, 678-685.	5.2	30

ARTICLE IF CITATIONS
The Effects of DNA Synthesis Inhibitors on Cell Cycle Synchronization in Cucumber (Cucumis sativus) Tj ETQq1 1 0.784314 rgBT /Overlands

The Shine-Dalgarno-like sequence is a negative regulatory element for translation of tobacco chloroplast rps2 mRNA: an additional mechanism for translational control in chloroplasts. Plant Journal, 2003, 34, 377-382.