Qing Nian Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5108204/publications.pdf

Version: 2024-02-01

201674 223800 2,706 89 27 46 citations g-index h-index papers 90 90 90 1978 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40512-40523.	8.0	230
2	A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion. Applied Sciences (Switzerland), 2019, 9, 4842.	2.5	204
3	MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. Journal of Hazardous Materials, 2020, 381, 120952.	12.4	174
4	Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combustion and Flame, 2009, 156, 1339-1347.	5 . 2	117
5	Functionalization of MXene Nanosheets for Polystyrene towards High Thermal Stability and Flame Retardant Properties. Polymers, 2019, 11, 976.	4.5	93
6	Effects of injection pressure on the structural transformation of flash-boiling sprays of gasoline and ethanol in a spark-ignition direct-injection (SIDI) engine. Fuel, 2014, 130, 228-240.	6.4	77
7	Recent advances in the measurement of strongly radiating, turbulent reacting flows. Progress in Energy and Combustion Science, 2012, 38, 41-61.	31.2	72
8	Development of temperature imaging using two-line atomic fluorescence. Applied Optics, 2009, 48, 1237.	2.1	57
9	Performance and emissions of hydrogen-diesel dual direct injection (H2DDI) in a single-cylinder compression-ignition engine. International Journal of Hydrogen Energy, 2021, 46, 1302-1314.	7.1	57
10	Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame. Combustion and Flame, 2013, 160, 1298-1309.	5 . 2	55
11	A Review on Lithium-lon Battery Separators towards Enhanced Safety Performances and Modelling Approaches. Molecules, 2021, 26, 478.	3.8	49
12	Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid). Composites Science and Technology, 2018, 164, 44-50.	7.8	47
13	Novel 3D Network Architectured Hybrid Aerogel Comprising Epoxy, Graphene, and Hydroxylated Boron Nitride Nanosheets. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40032-40043.	8.0	45
14	Combustion characterization of waste cooking oil and canola oil based biodiesels under simulated engine conditions. Fuel, 2018, 224, 167-177.	6.4	44
15	Fire Risk Assessment of Combustible Exterior Cladding Using a Collective Numerical Database. Fire, 2019, 2, 11.	2.8	44
16	Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments. SAE International Journal of Engines, 0, 9, 279-296.	0.4	42
17	Simultaneous imaging of temperature and soot volume fraction. Proceedings of the Combustion Institute, 2011, 33, 791-798.	3.9	41
18	Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. International Journal of Heat and Mass Transfer, 2017, 115, 717-729.	4.8	39

#	Article	IF	Citations
19	Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. Journal of Fire Sciences, 2018, 36, 494-517.	2.0	39
20	Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. International Journal of Heat and Mass Transfer, 2018, 125, 310-322.	4.8	36
21	A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission. Applied Energy, 2019, 254, 113721.	10.1	34
22	Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. Journal of Computational Science, 2018, 24, 8-23.	2.9	33
23	On the influences of key modelling constants of large eddy simulations forÂlarge-scale compartment fires predictions. International Journal of Computational Fluid Dynamics, 2017, 31, 324-337.	1.2	32
24	Fabrication of Fully Bio-Based Aerogels via Microcrystalline Cellulose and Hydroxyapatite Nanorods with Highly Effective Flame-Retardant Properties. ACS Applied Nano Materials, 2018, 1, 1921-1931.	5.0	32
25	Spray and Combustion Investigation of Post Injections under Low-Temperature Combustion Conditions with Biodiesel. Energy & Energy	5.1	31
26	Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	30
27	Hydrodynamic and chemical effects of hydrogen addition on soot evolution in turbulent nonpremixed bluff body ethylene flames. Proceedings of the Combustion Institute, 2017, 36, 807-814.	3.9	29
28	Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels. Composites Part A: Applied Science and Manufacturing, 2019, 119, 196-205.	7.6	29
29	Emissions characteristics of NO x and SO 2 in the combustion of microalgae biomass using a tube furnace. Journal of the Energy Institute, 2017, 90, 806-812.	5.3	28
30	Effects of flame-plane wall impingement on diesel combustion and soot processes. Fuel, 2019, 255, 115726.	6.4	28
31	Visualization of hydrogen jet evolution and combustion under simulated direct-injection compression-ignition engine conditions. International Journal of Hydrogen Energy, 2020, 45, 32562-32578.	7.1	27
32	Evaluating the fire risk associated with cladding panels: An overview of fire incidents, policies, and future perspective in fire standards. Fire and Materials, 2021, 45, 663-689.	2.0	27
33	Spray Penetrations of Ethanol, Gasoline and Iso-Octane in an Optically Accessible Spark-Ignition Direct-Injection Engine. SAE International Journal of Fuels and Lubricants, 0, 7, 1010-1026.	0.2	26
34	Influence of turbulent fluctuations on radiation heat transfer, NO and soot formation under ECN Spray A conditions. Proceedings of the Combustion Institute, 2017, 36, 3551-3558.	3.9	26
35	Comparative Studies on Thermal, Mechanical, and Flame Retardant Properties of PBT Nanocomposites via Different Oxidation State Phosphorus-Containing Agents Modified Amino-CNTs. Nanomaterials, 2018, 8, 70.	4.1	26
36	Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. Journal of Building Engineering, 2020, 28, 100999.	3.4	26

#	Article	IF	CITATIONS
37	The influence on the soot distribution within a laminar flame of radiation at fluxes of relevance to concentrated solar radiation. Combustion and Flame, 2011, 158, 1814-1821.	5.2	24
38	Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina. Applied Energy, 2018, 229, 736-744.	10.1	24
39	Development of an evacuation model considering the impact of stress variation on evacuees under fire emergency. Safety Science, 2021, 138, 105232.	4.9	24
40	Temperature measurements in turbulent non-premixed flames by two-line atomic fluorescence. Proceedings of the Combustion Institute, 2013, 34, 3619-3627.	3.9	23
41	Soot sheet dimensions in turbulent nonpremixed flames. Combustion and Flame, 2011, 158, 2458-2464.	5. 2	22
42	The Effect of Fuel-Injection Timing on In-cylinder Flow and Combustion Performance in a Spark-Ignition Direct-Injection (SIDI) Engine Using Particle Image Velocimetry (PIV). Flow, Turbulence and Combustion, 2018, 101, 191-218.	2.6	21
43	Instantaneous Temperature Imaging of Diffusion Flames Using Two-Line Atomic Fluorescence. Applied Spectroscopy, 2010, 64, 173-176.	2.2	20
44	External irradiation effect on the growth and evolution of in-flame soot species. Carbon, 2016, 102, 161-171.	10.3	20
45	Effect of jet–jet interactions on soot formation in a small-bore diesel engine. Proceedings of the Combustion Institute, 2017, 36, 3559-3566.	3.9	20
46	Flame–Wall Interaction Effects on Diesel Post-injection Combustion and Soot Formation Processes. Energy & Company Fuels, 2019, 33, 7759-7769.	5.1	20
47	Natural Ventilated Smoke Control Simulation Case Study Using Different Settings of Smoke Vents and Curtains in a Large Atrium. Fire, 2019, 2, 7.	2.8	20
48	Solvent effects on two-line atomic fluorescence of indium. Applied Optics, 2010, 49, 1257.	2.1	18
49	Flow seeding with elemental metal species via an optical method. Applied Physics B: Lasers and Optics, 2012, 107, 665-668.	2.2	18
50	Algorithm for soot sheet quantification in a piloted turbulent jet non-premixed natural gas flame. Experiments in Fluids, 2014, 55, 1.	2.4	18
51	Double Injection Strategies for Ethanol-Fuelled Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine. , 0, , .		18
52	Color-ratio pyrometry methods for flame–wall impingement study. Journal of the Energy Institute, 2019, 92, 1968-1976.	5. 3	18
53	Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames. Applied Physics B: Lasers and Optics, 2011, 104, 189-198.	2.2	17
54	Application of a multiple mapping conditioning mixing model to ECN Spray A. Proceedings of the Combustion Institute, 2019, 37, 3263-3270.	3.9	17

#	Article	IF	CITATIONS
55	Downstream evolution of n-heptane/toluene flames in hot and vitiated coflows. Combustion and Flame, 2019, 202, 78-89.	5.2	17
56	CO2 Emission of Electric and Gasoline Vehicles under Various Road Conditions for China, Japan, Europe and World Average—Prediction through Year 2040. Applied Sciences (Switzerland), 2019, 9, 2295.	2.5	17
57	Laminar Flame Calculations for Analyzing Trends in Autoignitive Jet Flames in a Hot and Vitiated Coflow. Energy & Energy	5.1	16
58	Influence of Injection Timing for Split-Injection Strategies on Well-Mixed High-Load Combustion Performance in an Optically Accessible Spark-Ignition Direct-Injection (SIDI) Engine. , 0, , .		16
59	Influence of Engine Speed on Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine. , 0, , .		16
60	Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame. Journal of the Energy Institute, 2020, 93, 112-128.	5.3	16
61	New Seeding Methodology for Gas Concentration Measurements. Applied Spectroscopy, 2012, 66, 803-809.	2.2	15
62	Modeling the Response of Magnetorheological Fluid Dampers under Seismic Conditions. Applied Sciences (Switzerland), 2019, 9, 4189.	2.5	15
63	Study of Morphology and Optical Properties of Gold Nanoparticle Aggregates under Different pH Conditions. Langmuir, 2018, 34, 10340-10352.	3.5	14
64	Developing a solid decomposition kinetics extraction framework for detailed chemistry pyrolysis and combustion modelling of building polymer composites. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105500.	5.5	13
65	An Investigation towards Coupling Molecular Dynamics with Computational Fluid Dynamics for Modelling Polymer Pyrolysis. Molecules, 2022, 27, 292.	3.8	12
66	Influence of Eddy-Generation Mechanism on the Characteristic of On-Source Fire Whirl. Applied Sciences (Switzerland), 2019, 9, 3989.	2.5	11
67	Ignition and flame stabilisation of primary reference fuel sprays at engine-relevant conditions. Combustion and Flame, 2021, 233, 111620.	5.2	11
68	A Comparative Analysis on the Spray Penetration of Ethanol, Gasoline and Iso-Octane Fuel in a Spark-Ignition Direct-Injection Engine. , 0, , .		10
69	A comparison of high-temperature reaction and soot processes of conventional diesel and methyl decanoate. Fuel, 2018, 226, 635-643.	6.4	10
70	Study of Ignition and Combustion Characteristics of Consecutive Injections with <i>iso</i> -Octane and <i>n</i> -Heptane as Fuels. Energy & Sump; Fuels, 2020, 34, 14741-14756.	5.1	10
71	A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numerical Heat Transfer; Part A: Applications, 2021, 79, 570-593.	2.1	10
72	Co-Combustion Characteristics and Kinetics of Microalgae <i>Chlorella Vulgaris</i> and Coal through TGA. Combustion Science and Technology, 2020, 192, 26-45.	2.3	9

#	Article	IF	CITATIONS
73	Experimental investigation of the flame structure of dilute sprays issuing into a hot and low-oxygen coflow. Combustion and Flame, 2021, 230, 111439.	5.2	9
74	Pyrolysis and combustion characterisation of HDPE/APP composites via molecular dynamics and CFD simulations. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105499.	5.5	9
75	Application of LED-based thermographic phosphorescent technique to diesel combustion chamber walls in a pre-burn-type optical constant-volume vessel. Experiments in Fluids, 2019, 60, 1.	2.4	8
76	Sensitivity Analysis of Key Parameters for Population Balance Based Soot Model for Low-Speed Diffusion Flames. Energies, 2019, 12, 910.	3.1	8
77	Multiple Injection Strategy Investigation for Well-Mixed Operation in an Optical Wall-Guided Spark-Ignition Direct-Injection (WG-SIDI) Engine through Flame Shape Analysis. , 0, , .		7
78	A parametric study of autoigniting hydrogen jets under compression-ignition engine conditions. International Journal of Hydrogen Energy, 2022, 47, 21307-21322.	7.1	7
79	Spray and Combustion Characteristics of Gasoline-like Fuel under Compression-Ignition Conditions. Energy & Ener	5.1	6
80	Numerical Study of the Comparison of Symmetrical and Asymmetrical Eddy-Generation Scheme on the Fire Whirl Formulation and Evolution. Applied Sciences (Switzerland), 2020, 10, 318.	2.5	6
81	Dilute spray flames of ethanol and <mml:math altimg="si8.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -heptane in the transition to mild combustion. Combustion and Flame, 2022, 238, 111918.	5.2	6
82	Laser ignition of iso-octane and n-heptane jets under compression-ignition conditions. Fuel, 2022, 311, 122555.	6.4	5
83	Influence of flash boiling and swirl ratio on the gasoline spray structure in a spark-ignition optical engine: An experimental study. Journal of the Energy Institute, 2021, 94, 233-241.	5.3	3
84	Controlling the clustering behavior of particulate colloidal systems using alternating and rotating magnetic fields. Computational Particle Mechanics, $0, 1$.	3.0	2
85	Soot: A review of computational models at different length scales. Experimental and Computational Multiphase Flow, 2023, 5, 1-14.	3.9	2
86	Atomistic characterisation of graphite oxidation and thermal decomposition mechanism under isothermal and Non-Isothermal heating scheme. Computational Materials Science, 2022, 210, 111458.	3.0	2
87	Recent Advances in Measurement of Turbulent Reacting Flows in Which Heat Transfer is Dominated by Radiation. , 2010, , .		0
88	In-Cylinder Soot Reduction Using Microwave Generated Plasma in an Optically Accessible Small-Bore Diesel Engine. , 2018, , .		0
89	Progress in Combustion Diagnostics, Science and Technology. Applied Sciences (Switzerland), 2020, 10, 1586.	2.5	0