Aris Katzourakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5107827/publications.pdf Version: 2024-02-01

ADIS KATZOUDARIS

#	Article	IF	CITATIONS
1	Paleovirology of the DNA viruses of eukaryotes. Trends in Microbiology, 2022, 30, 281-292.	7.7	20
2	Purifying Selection Determines the Short-Term Time Dependency of Evolutionary Rates in SARS-CoV-2 and pH1N1 Influenza. Molecular Biology and Evolution, 2022, 39, .	8.9	42
3	Antigenic evolution will lead to new SARS-CoV-2 variants with unpredictable severity. Nature Reviews Microbiology, 2022, 20, 251-252.	28.6	96
4	Target Enrichment Metagenomics Reveals Human Pegivirus-1 in Pediatric Hematopoietic Stem Cell Transplantation Recipients. Viruses, 2022, 14, 796.	3.3	1
5	A framework for reconstructing SARS-CoV-2 transmission dynamics using excess mortality data. Nature Communications, 2022, 13, .	12.8	10
6	Tilapia lake virus (TiLV): Genomic epidemiology and its early origin. Transboundary and Emerging Diseases, 2021, 68, 435-444.	3.0	18
7	Estimates of anti-SARS-CoV-2 antibody seroprevalence in Iran. Lancet Infectious Diseases, The, 2021, 21, 602-603.	9.1	11
8	Excess deaths associated with the Iranian COVID-19 epidemic: A province-level analysis. International Journal of Infectious Diseases, 2021, 107, 101-115.	3.3	24
9	A mechanistic evolutionary model explains the time-dependent pattern of substitution rates in viruses. Current Biology, 2021, 31, 4689-4696.e5.	3.9	30
10	Lessons for preparedness and reasons for concern from the early COVID-19 epidemic in Iran. Epidemics, 2021, 36, 100472.	3.0	17
11	Phylogenomics of the <i>Maverick</i> Virus-Like Mobile Genetic Elements of Vertebrates. Molecular Biology and Evolution, 2021, 38, 1731-1743.	8.9	22
12	Rapid evidence review to inform safe return to campus in the context of coronavirus disease 2019 (COVID-19). Wellcome Open Research, 2021, 6, 282.	1.8	6
13	Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biology, 2021, 19, e3001442.	5.6	44
14	SARS-CoV-2 genetic variations associated with COVID-19 pathogenicity. Microbial Genomics, 2021, 7, .	2.0	10
15	Six reference-quality genomes reveal evolution of bat adaptations. Nature, 2020, 583, 578-584.	27.8	210
16	HIV-1 p24Gag adaptation to modern and archaic HLA-allele frequency differences in ethnic groups contributes to viral subtype diversification. Virus Evolution, 2020, 6, veaa085.	4.9	7
17	Host or pathogen-related factors in COVID-19 severity? – Authors' reply. Lancet, The, 2020, 396, 1397	13.7	3
18	The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annual Review of Virology, 2020, 7, 103-119.	6.7	34

ARIS KATZOURAKIS

#	Article	IF	CITATIONS
19	The First Co-Opted Endogenous Foamy Viruses and the Evolutionary History of Reptilian Foamy Viruses. Viruses, 2019, 11, 641.	3.3	13
20	The evolution of endogenous retroviral envelope genes in bats and their potential contribution to host biology. Virus Research, 2019, 270, 197645.	2.2	10
21	Modular nature of simian foamy virus genomes and their evolutionary history. Virus Evolution, 2019, 5, vez032.	4.9	14
22	Interferon-Inducible Protein 16 (IFI16) Has a Broad-Spectrum Binding Ability Against ssDNA Targets: An Evolutionary Hypothesis for Antiretroviral Checkpoint. Frontiers in Microbiology, 2019, 10, 1426.	3.5	18
23	The Exaptation of HERV-H: Evolutionary Analyses Reveal the Genomic Features of Highly Transcribed Elements. Frontiers in Immunology, 2019, 10, 1339.	4.8	18
24	Reply to â€~Evolutionary stasis ofÂviruses?'. Nature Reviews Microbiology, 2019, 17, 329-330.	28.6	3
25	Prisoners of war — host adaptation and its constraints on virus evolution. Nature Reviews Microbiology, 2019, 17, 321-328.	28.6	117
26	Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nature Ecology and Evolution, 2018, 2, 659-668.	7.8	124
27	Molecular epidemiology reveals the role of war in the spread of HIV in Ukraine. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1051-1056.	7.1	65
28	Human Endogenous Retrovirus-K HML-2 integration within <i>RASGRF2</i> is associated with intravenous drug abuse and modulates transcription in a cell-line model. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10434-10439.	7.1	18
29	Cell-Derived Viral Genes Evolve under Stronger Purifying Selection in Rhadinoviruses. Journal of Virology, 2018, 92, .	3.4	3
30	Marine origin of retroviruses in the early Palaeozoic Era. Nature Communications, 2017, 8, 13954.	12.8	104
31	Roles of Endogenous Retroviruses in Early Life Events. Trends in Microbiology, 2017, 25, 876-877.	7.7	14
32	Editorial overview: Paleovirology: the genomic fossil record, and consequences of ancient viral infections. Current Opinion in Virology, 2017, 25, ix-xi.	5.4	3
33	A novel viral lineage distantly related to herpesviruses discovered within fish genome sequence data. Virus Evolution, 2017, 3, vex016.	4.9	20
34	Disentangling the origins of virophages and polintons. Current Opinion in Virology, 2017, 25, 59-65.	5.4	16
35	STEAK: A specific tool for transposable elements and retrovirus detection in high-throughput sequencing data. Virus Evolution, 2017, 3, vex023.	4.9	21
36	De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies. PLoS ONE, 2016, 11, e0157600.	2.5	43

ARIS KATZOURAKIS

#	Article	IF	CITATIONS
37	A contaminant-free assessment of Endogenous Retroviral RNA in human plasma. Scientific Reports, 2016, 6, 33598.	3.3	15
38	Evolution: Endogenous Viruses Provide Shortcuts in Antiviral Immunity. Current Biology, 2016, 26, R427-R429.	3.9	16
39	The global spread of HIV-1 subtype B epidemic. Infection, Genetics and Evolution, 2016, 46, 169-179.	2.3	60
40	Time-Dependent Rate Phenomenon in Viruses. Journal of Virology, 2016, 90, 7184-7195.	3.4	128
41	Human endogenous retrovirus (HERV) expression is not induced by treatment with the histone deacetylase (HDAC) inhibitors in cellular models of HIV-1 latency. Retrovirology, 2016, 13, 10.	2.0	25
42	Phylogenetic Analysis Reveals That ERVs "Die Young" but HERV-H Is Unusually Conserved. PLoS Computational Biology, 2016, 12, e1004964.	3.2	22
43	HIV-infected sex workers with beneficial HLA-variants are potential hubs for selection of HIV-1 recombinants that may affect disease progression. Scientific Reports, 2015, 5, 11253.	3.3	5
44	Orthologous endogenous retroviruses exhibit directional selection since the chimp-human split. Retrovirology, 2015, 12, 52.	2.0	17
45	Wide distribution and ancient evolutionary history of simian foamy viruses in New World primates. Retrovirology, 2015, 12, 89.	2.0	26
46	Convergent capture of retroviral superantigens by mammalian herpesviruses. Nature Communications, 2015, 6, 8299.	12.8	14
47	Endogenous retroviruses. Current Biology, 2015, 25, R644-R646.	3.9	17
48	Endogenous viruses: Connecting recent and ancient viral evolution. Virology, 2015, 479-480, 26-37.	2.4	152
49	Time dependency of foamy virus evolutionary rate estimates. BMC Evolutionary Biology, 2015, 15, 119.	3.2	28
50	Larger Mammalian Body Size Leads to Lower Retroviral Activity. PLoS Pathogens, 2014, 10, e1004214.	4.7	47
51	The First Endogenous Herpesvirus, Identified in the Tarsier Genome, and Novel Sequences from Primate Rhadinoviruses and Lymphocryptoviruses. PLoS Genetics, 2014, 10, e1004332.	3.5	47
52	Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology, 2014, 11, 61.	2.0	45
53	Sex-specific aspects of endogenous retroviral insertion and deletion. BMC Evolutionary Biology, 2013, 13, 243.	3.2	2
54	Paleovirology: inferring viral evolution from host genome sequence data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120493.	4.0	53

ARIS KATZOURAKIS

#	Article	IF	CITATIONS
55	The mode and tempo of hepatitis C virus evolution within and among hosts. BMC Evolutionary Biology, 2011, 11, 131.	3.2	122
56	Phylogenetic Analysis of Murine Leukemia Virus Sequences from Longitudinally Sampled Chronic Fatigue Syndrome Patients Suggests PCR Contamination Rather than Viral Evolution. Journal of Virology, 2011, 85, 10909-10913.	3.4	15
57	Endogenous Viral Elements in Animal Genomes. PLoS Genetics, 2010, 6, e1001191.	3.5	565
58	Macroevolution of Complex Retroviruses. Science, 2009, 325, 1512-1512.	12.6	146
59	HLA Footprints on Human Immunodeficiency Virus Type 1 Are Associated with Interclade Polymorphisms and Intraclade Phylogenetic Clustering. Journal of Virology, 2009, 83, 4605-4615.	3.4	40
60	A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20362-20367.	7.1	183
61	Effects of Recombination Rate on Human Endogenous Retrovirus Fixation and Persistence. Journal of Virology, 2007, 81, 10712-10717.	3.4	39
62	Discovery and analysis of the first endogenous lentivirus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6261-6265.	7.1	193
63	The evolutionary dynamics of endogenous retroviruses. Trends in Microbiology, 2005, 13, 463-468.	7.7	84
64	A Mechanistic Evolutionary Model Explains the Time-Dependent Pattern of Substitution Rates in Viruses. SSRN Electronic Journal, 0, , .	0.4	1