
Karen Coopman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5107210/publications.pdf Version: 2024-02-01

KADEN COODMAN

#	Article	IF	CITATIONS
1	Expansion of human mesenchymal stem/stromal cells on temporary liquid microcarriers. Journal of Chemical Technology and Biotechnology, 2021, 96, 930-940.	3.2	15
2	Assessment of Protocol Impact on Subjectivity Uncertainty When Analyzing Peripheral Blood Mononuclear Cell Flow Cytometry Data Files. Methods and Protocols, 2021, 4, 24.	2.0	3
3	Development of a hollow fibre-based renal module for active transport studies. Journal of Artificial Organs, 2021, 24, 473-484.	0.9	4
4	Quantifying Operator Subjectivity within Flow Cytometry Data Analysis as a Source of Measurement Uncertainty and the Impact of Experience on Results. PDA Journal of Pharmaceutical Science and Technology, 2021, 75, 33-47.	0.5	8
5	Understanding the contribution of operator measurement variability within Flow Cytometry data analysis for Quality Control of Cell and Gene Therapy manufacturing. Measurement: Journal of the International Measurement Confederation, 2020, 150, 106998.	5.0	9
6	Quantitative assessment of the impact of cryopreservation on human bone marrow-derived mesenchymal stem cells: up to 24Åh post-thaw and beyond. Stem Cell Research and Therapy, 2020, 11, 540.	5.5	23
7	Chitosan & Conductive PANI/Chitosan Composite Nanofibers - Evaluation of Antibacterial Properties. Current Nanomaterials, 2019, 4, 6-20.	0.4	14
8	The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: a systematic review. Journal of Translational Medicine, 2019, 17, 397.	4.4	69
9	Development of a process control strategy for the serum-free microcarrier expansion of human mesenchymal stem cells towards cost-effective and commercially viable manufacturing. Biochemical Engineering Journal, 2019, 141, 200-209.	3.6	14
10	Agitation and aeration of stirred-bioreactors for the microcarrier culture of human mesenchymal stem cells and potential implications for large-scale bioprocess development. Biochemical Engineering Journal, 2018, 136, 9-17.	3.6	28
11	Qualitative and quantitative demonstration of bead-to-bead transfer with bone marrow-derived human mesenchymal stem cells on microcarriers: Utilising the phenomenon to improve culture performance. Biochemical Engineering Journal, 2018, 135, 11-21.	3.6	41
12	The Role of Dissolved Oxygen Levels on Human Mesenchymal Stem Cell Culture Success, Regulatory Compliance, and Therapeutic Potential. Stem Cells and Development, 2018, 27, 1303-1321.	2.1	20
13	Development of an optical system for the nonâ€invasive tracking of stem cell growth on microcarriers. Biotechnology and Bioengineering, 2017, 114, 2032-2042.	3.3	16
14	Process development of human multipotent stromal cell microcarrier culture using an automated highâ€ŧhroughput microbioreactor. Biotechnology and Bioengineering, 2017, 114, 2253-2266.	3.3	35
15	Engineering considerations on the use of liquid/liquid two-phase systems as a cell culture platform. Journal of Chemical Technology and Biotechnology, 2017, 92, 1690-1698.	3.2	12
16	A liquid/liquid two phase system as an economic alternative for the large-scale expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs). Journal of Biotechnology, 2017, 256, S43.	3.8	0
17	Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. Journal of Chemical Technology and Biotechnology, 2017, 92, 1577-1589.	3.2	21
18	Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications. Polymers, 2017, 9, 687.	4.5	58

KAREN COOPMAN

#	Article	IF	CITATIONS
19	The role of biopreservation in cell and gene therapy bioprocessing. Cell & Gene Therapy Insights, 2017, 3, 335-344.	0.1	5
20	Mixing theory for culture and harvest in bioreactors of human mesenchymal stem cells on microcarriers. Theoretical Foundations of Chemical Engineering, 2016, 50, 895-900.	0.7	6
21	Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy, 2016, 18, 523-535.	0.7	35
22	The effect of Me 2 SO overexposure during cryopreservation on HOS TE85 and hMSC viability, growth and quality. Cryobiology, 2016, 73, 367-375.	0.7	19
23	Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnology Journal, 2016, 11, 473-486.	3.5	117
24	Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms. Biochemical Engineering Journal, 2016, 108, 24-29.	3.6	73
25	Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Biochemical Engineering Journal, 2016, 108, 14-23.	3.6	72
26	Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serumâ€free microcarrier process. Biotechnology and Bioengineering, 2015, 112, 1696-1707.	3.3	71
27	Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production. Cytotherapy, 2015, 17, 1524-1535.	0.7	34
28	The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regenerative Medicine, 2015, 10, 49-64.	1.7	253
29	Conductive PANI fibers and determining factors for the electrospinning window. Polymer, 2015, 77, 143-151.	3.8	42
30	Low temperature cell pausing: an alternative short-term preservation method for use in cell therapies including stem cell applications. Biotechnology Letters, 2014, 36, 201-209.	2.2	30
31	Multiparameter flow cytometry for the characterisation of extracellular markers on human mesenchymal stem cells. Biotechnology Letters, 2014, 36, 731-741.	2.2	16
32	A potentially scalable method for the harvesting of hMSCs from microcarriers. Biochemical Engineering Journal, 2014, 85, 79-88.	3.6	127
33	From production to patient: challenges and approaches for delivering cell therapies. Stembook, 2014, ,	0.3	19
34	Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Current Opinion in Chemical Engineering, 2013, 2, 8-16.	7.8	58
35	Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation. Cryobiology, 2013, 67, 305-311.	0.7	29
36	The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochemical Engineering Journal, 2013, 76, 25-36.	3.6	109

KAREN COOPMAN

#	Article	IF	CITATIONS
37	The use of bioreactors as in vitro models in pharmaceutical research. Drug Discovery Today, 2013, 18, 922-935.	6.4	24
38	Culture of human mesenchymal stem cells on microcarriers in a 5Âl stirred-tank bioreactor. Biotechnology Letters, 2013, 35, 1233-1245.	2.2	160
39	A quantitative approach for understanding smallâ€scale human mesenchymal stem cell culture – implications for largeâ€scale bioprocess development. Biotechnology Journal, 2013, 8, 459-471.	3.5	21
40	Multiparameter flow cytometry for the characterization of human embryonic stem cells. Biotechnology Letters, 2013, 35, 55-65.	2.2	2
41	Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regenerative Medicine, 2012, 7, 71-84.	1.7	78
42	Largeâ€scale compatible methods for the preservation of human embryonic stem cells: Current perspectives. Biotechnology Progress, 2011, 27, 1511-1521.	2.6	25
43	Residues within the Transmembrane Domain of the Glucagon-Like Peptide-1 Receptor Involved in Ligand Binding and Receptor Activation: Modelling the Ligand-Bound Receptor. Molecular Endocrinology, 2011, 25, 1804-1818.	3.7	45
44	Comparative Effects of the Endogenous Agonist Glucagon-Like Peptide-1 (GLP-1)-(7-36) Amide and the Small-Molecule Ago-Allosteric Agent "Compound 2―at the GLP-1 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 795-808.	2.5	48
45	Temporal variation in CB2R levels following T lymphocyte activation: Evidence that cannabinoids modulate CXCL12-induced chemotaxis. International Immunopharmacology, 2007, 7, 360-371.	3.8	60
46	Differential regulation of prostaglandin E biosynthesis by interferon-Î ³ in colonic epithelial cells. British Journal of Pharmacology, 2004, 141, 1091-1097.	5.4	17