
Majd Mayyasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5106958/publications.pdf Version: 2024-02-01

Μλίο Μλγγλει

#	Article	IF	CITATIONS
1	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
2	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
3	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
4	A strong seasonal dependence in the Martian hydrogen exosphere. Geophysical Research Letters, 2015, 42, 8678-8685.	4.0	86
5	Modeling Mars' ionosphere with constraints from same-day observations by Mars Global Surveyor and Mars Express. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	72
6	Variability of D and H in the Martian upper atmosphere observed with the MAVEN IUVS echelle channel. Journal of Geophysical Research: Space Physics, 2017, 122, 2336-2344.	2.4	64
7	The composition of Mars' topside ionosphere: Effects of hydrogen. Journal of Geophysical Research: Space Physics, 2013, 118, 2681-2693.	2.4	61
8	Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 2014, 227, 78-88.	2.5	60
9	Discovery of a proton aurora at Mars. Nature Astronomy, 2018, 2, 802-807.	10.1	50
10	Interpreting Mars ionospheric anomalies over crustal magnetic field regions using a 2â€Ð ionospheric model. Journal of Geophysical Research: Space Physics, 2015, 120, 766-777.	2.4	46
11	A clear view of the multifaceted dayside ionosphere of Mars. Geophysical Research Letters, 2012, 39, .	4.0	42
12	Mars H Escape Rates Derived From MAVEN/IUVS Lyman Alpha Brightness Measurements and Their Dependence on Model Assumptions. Journal of Geophysical Research E: Planets, 2018, 123, 2192-2210.	3.6	42
13	Sources of Ionospheric Variability at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 9670-9684.	2.4	40
14	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	10.1	40
15	Numerical simulations of the ionosphere of Mars during a solar flare. Journal of Geophysical Research, 2012, 117, .	3.3	38
16	Mars' Ionopause: A Matter of Pressures. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028145.	2.4	35
17	Significant Space Weather Impact on the Escape of Hydrogen From Mars. Geophysical Research Letters, 2018, 45, 8844-8852.	4.0	29
18	Analysis and modeling of remote observations of the martian hydrogen exosphere. Icarus, 2017, 281, 264-280.	2.5	27

Majd Mayyasi

#	Article	IF	CITATIONS
19	Mars's Dayside Upper Ionospheric Composition Is Affected by Magnetic Field Conditions. Journal of Geophysical Research: Space Physics, 2019, 124, 3100-3109.	2.4	26
20	Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data. Geophysical Research Letters, 2015, 42, 8966-8976.	4.0	25
21	Proton Aurora on Mars: A Dayside Phenomenon Pervasive in Southern Summer. Journal of Geophysical Research: Space Physics, 2019, 124, 10533-10548.	2.4	24
22	Seasonal Changes in Hydrogen Escape From Mars Through Analysis of HST Observations of the Martian Exosphere Near Perihelion. Journal of Geophysical Research: Space Physics, 2017, 122, 11,756.	2.4	22
23	Martian Electron Temperatures in the Subsolar Region: MAVEN Observations Compared to a Oneâ€Dimensional Model. Journal of Geophysical Research: Space Physics, 2018, 123, 5960-5973.	2.4	21
24	Ionâ€Neutral Coupling in the Upper Atmosphere of Mars: A Dominant Driver of Topside Ionospheric Structure. Journal of Geophysical Research: Space Physics, 2019, 124, 3786-3798.	2.4	18
25	In Situ Measurements of Thermal Ion Temperature in the Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029531.	2.4	17
26	Variability in ionospheric total electron content at Mars. Planetary and Space Science, 2013, 86, 117-129.	1.7	16
27	IUVS echelleâ€mode observations of interplanetary hydrogen: Standard for calibration and reference for cavity variations between Earth and Mars during MAVEN cruise. Journal of Geophysical Research: Space Physics, 2017, 122, 2089-2105.	2.4	16
28	Predictions of electron temperatures in the Mars ionosphere and their effects on electron densities. Geophysical Research Letters, 2014, 41, 2681-2686.	4.0	15
29	MAVEN and the Mars Initial Reference Ionosphere model. Geophysical Research Letters, 2015, 42, 9080-9086.	4.0	15
30	The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence. Journal of Geophysical Research: Space Physics, 2017, 122, 10,811.	2.4	15
31	Seasonal Variability of Deuterium in the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 2152-2164.	2.4	13
32	Effect of the 2018 Martian Global Dust Storm on the CO ₂ Density in the Lower Nightside Thermosphere Observed From MAVEN/IUVS Lymanâ€Alpha Absorption. Geophysical Research Letters, 2020, 47, e2019GL082889.	4.0	13
33	MAVEN and the total electron content of the Martian ionosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 3526-3537.	2.4	12
34	Mars Initial Reference Ionosphere (MIRI) Model: Updates and Validations Using MAVEN, MEX, and MRO Data Sets. Journal of Geophysical Research: Space Physics, 2018, 123, 5674-5683.	2.4	12
35	A Sporadic Topside Layer in the Ionosphere of Mars From Analysis of MGS Radio Occultation Data. Journal of Geophysical Research: Space Physics, 2018, 123, 883-900.	2.4	10
36	Flares at Earth and Mars: An Ionospheric Escape Mechanism?. Space Weather, 2018, 16, 1042-1056.	3.7	10

MAJD MAYYASI

#	Article	IF	CITATIONS
37	Why the Viking descent probes found only one ionospheric layer at Mars. Geophysical Research Letters, 2015, 42, 7359-7365.	4.0	9
38	Mars' plasma system. Scientific potential of coordinated multipoint missions: "The next generation― Experimental Astronomy, 2022, 54, 641-676.	3.7	9
39	Two-dimensional model for the martian exosphere: Applications to hydrogen and deuterium Lyman $\hat{l}\pm$ observations. Icarus, 2020, 339, 113573.	2.5	8
40	Comparative aeronomy: Molecular ionospheres at Earth and Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 10,269-10,288.	2.4	7
41	Longâ€Term Observations and Physical Processes in the Moon's Extended Sodium Tail. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006671.	3.6	7
42	Effects of the June 2018 Global Dust Storm on the Atmospheric Composition of the Martian Upper Atmosphere as Observed by MAVEN. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006868.	3.6	7
43	Estimate of the D/H Ratio in the Martian Upper Atmosphere from the Low Spectral Resolution Mode of MAVEN/IUVS. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006814.	3.6	6
44	Lyα Observations of Comet C/2013 A1 (Siding Spring) Using MAVEN IUVS Echelle. Astronomical Journal, 2020, 160, 10.	4.7	3
45	On the Altitude Patterns of Photoâ€Chemicalâ€Equilibrium in the Martian Ionosphere: A Special Role for Electron Temperature. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	3
46	MAVEN/IUVS observations of CÂI 156.1Ânm and 165.7Ânm dayglow: Direct detection of carbon and implications on photochemical escape. Icarus, 2022, 371, 114664.	2.5	2
47	Comparison of the Effects of Regional and Global Dust Storms on the Composition of the Ionized Species of the Martian Upper Atmosphere Using MAVEN. Remote Sensing, 2022, 14, 2594.	4.0	1