Young Wook Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5106943/publications.pdf

Version: 2024-02-01

27 papers

1,593 citations

³⁹⁴⁴²¹
19
h-index

501196 28 g-index

29 all docs

29 docs citations

times ranked

29

2322 citing authors

#	Article	IF	Citations
1	One-Step Synthesis of Au@Pd Coreâ^'Shell Nanooctahedron. Journal of the American Chemical Society, 2009, 131, 17036-17037.	13.7	327
2	Ultrathin Freeâ€Standing Ternaryâ€Alloy Nanosheets. Angewandte Chemie - International Edition, 2016, 55, 2753-2758.	13.8	197
3	One-Pot Synthesis of Trimetallic Au@PdPt Core–Shell Nanoparticles with High Catalytic Performance. ACS Nano, 2013, 7, 7945-7955.	14.6	192
4	Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by {110} Facets: Au–Pd Rhombic Dodecahedra. Angewandte Chemie - International Edition, 2011, 50, 3466-3470.	13.8	103
5	Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition. ACS Catalysis, 2019, 9, 819-826.	11.2	88
6	Shaping Pd nanocatalysts through the control of reaction sequence. Chemical Communications, 2010, 46, 1535.	4.1	74
7	Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by Highâ€Index Facets: Au–Pd Hexoctahedra. Small, 2013, 9, 660-665.	10.0	54
8	Dendritic Ternary Alloy Nanocrystals for Enhanced Electrocatalytic Oxidation Reactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44018-44026.	8.0	36
9	Ultrathin Freeâ€Standing Ternaryâ€Alloy Nanosheets. Angewandte Chemie, 2016, 128, 2803-2808.	2.0	34
10	Facile synthesis of noble metal nanotubes by using ZnO nanowires as sacrificial scaffolds and their electrocatalytic properties. Chemical Communications, 2011, 47, 6299.	4.1	32
11	Regulating the Catalytic Function of Reduced Graphene Oxides Using Capping Agents for Metal-Free Catalysis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1692-1701.	8.0	32
12	Nanogap-tailored Au nanoparticles fabricated by pulsed laser ablation for surface-enhanced Raman scattering. Biosensors and Bioelectronics, 2022, 197, 113766.	10.1	31
13	Core–Shell Nanoparticle Clusters Enable Synergistic Integration of Plasmonic and Catalytic Functions in a Single Platform. Small, 2017, 13, 1701633.	10.0	28
14	Hierarchical metal–semiconductor–graphene ternary heteronanostructures for plasmon-enhanced wide-range visible-light photocatalysis. Journal of Materials Chemistry A, 2019, 7, 15831-15840.	10.3	25
15	Understanding the Grain Boundary Behavior of Bimetallic Platinum–Cobalt Alloy Nanowires toward Oxygen Electro-Reduction. ACS Catalysis, 2022, 12, 3516-3523.	11.2	23
16	Simple Electrodeposition of Dendritic Au Rods from Sulfiteâ€Based Au(I) Electrolytes with High Electrocatalytic and SERS Activities. Electroanalysis, 2011, 23, 2030-2035.	2.9	20
17	Oneâ€Pot Selfâ€Templating Synthesis of Pt Hollow Nanostructures and Their Catalytic Properties for CO Oxidation. Chemistry - A European Journal, 2014, 20, 11669-11674.	3.3	20
18	Fabrication of BixPtyPdz alloy nanoporous plates with electro-catalytic activity. Journal of Materials Chemistry A, 2014, 2, 2735.	10.3	17

#	Article	IF	CITATIONS
19	Fine Control over the Compositional Structure of Trimetallic Core–Shell Nanocrystals for Enhanced Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25901-25908.	8.0	15
20	One-Pot Synthesis of Ternary Alloy Hollow Nanostructures with Controlled Morphologies for Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45538-45546.	8.0	10
21	Microwave synthesis of MWCNT-supported PtRuNi catalysts and their electrocatalytic activity for direct methanol fuel cells. Journal of the Korean Ceramic Society, 2020, 57, 192-199.	2.3	7
22	Shape- and Size-Controlled Palladium Nanocrystals and Their Electrocatalytic Properties in the Oxidation of Ethanol. Materials, 2021, 14, 2970.	2.9	6
23	Size-controlled palladium dendritic nanocrystals and their electrocatalytic property toward formic acid oxidation and SERS performance. Materials Letters, 2021, 284, 128988.	2.6	4
24	Hybrid Structure of TiO2-Graphitic Carbon as a Support of Pt Nanoparticles for Catalyzing Oxygen Reduction Reaction. Catalysts, 2021, 11, 1196.	3.5	4
25	Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals. Catalysts, 2021, 11, 1337.	3.5	3
26	Alloy Nanocrystals: Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by Highâ€Index Facets: Au–Pd Hexoctahedra (Small 5/2013). Small, 2013, 9, 646-646.	10.0	1
27	Plasmonic Nanostructures: Core–Shell Nanoparticle Clusters Enable Synergistic Integration of Plasmonic and Catalytic Functions in a Single Platform (Small 43/2017). Small, 2017, 13, .	10.0	0