
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5105904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PTC124 targets genetic disorders caused by nonsense mutations. Nature, 2007, 447, 87-91.	27.8	1,007
2	Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biology, 2003, 4, 223.	9.6	487
3	NMD: a multifaceted response to premature translational termination. Nature Reviews Molecular Cell Biology, 2012, 13, 700-712.	37.0	476
4	A faux 3′-UTR promotes aberrant termination and triggers nonsense- mediated mRNA decay. Nature, 2004, 432, 112-118.	27.8	454
5	Genome-Wide Analysis of mRNAs Regulated by the Nonsense-Mediated and 5′ to 3′ mRNA Decay Pathways in Yeast. Molecular Cell, 2003, 12, 1439-1452.	9.7	365
6	Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annual Review of Genetics, 2015, 49, 339-366.	7.6	239
7	Early nonsense: mRNA decay solves a translational problem. Nature Reviews Molecular Cell Biology, 2006, 7, 415-425.	37.0	235
8	Pbp1p, a Factor Interacting with <i>Saccharomyces cerevisiae</i> Poly(A)-Binding Protein, Regulates Polyadenylation. Molecular and Cellular Biology, 1998, 18, 7383-7396.	2.3	177
9	Translation factors promote the formation of two states of the closed-loop mRNP. Nature, 2008, 453, 1276-1280.	27.8	174
10	Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12508-12513.	7.1	168
11	Ataluren as an Agent for Therapeutic Nonsense Suppression. Annual Review of Medicine, 2013, 64, 407-425.	12.2	160
12	Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. Rna, 2000, 6, 1226-1235.	3.5	157
13	Ribosome Occupancy of the Yeast CPA1 Upstream Open Reading Frame Termination Codon Modulates Nonsense-Mediated mRNA Decay. Molecular Cell, 2005, 20, 449-460.	9.7	144
14	The intimate relationships of mRNA decay and translation. Trends in Genetics, 2013, 29, 691-699.	6.7	141
15	Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3038-3043.	7.1	109
16	Nonsense-mediated mRNA Decay in Yeast. Progress in Molecular Biology and Translational Science, 1994, 47, 271-298.	1.9	103
17	Upf1p Control of Nonsense mRNA Translation Is Regulated by Nmd2p and Upf3p. Molecular and Cellular Biology, 2000, 20, 4591-4603.	2.3	101
18	High-resolution profiling of NMD targets in yeast reveals translational fidelity as a basis for substrate selection. Rna, 2017, 23, 735-748.	3.5	92

#	Article	IF	CITATIONS
19	Upf1p, Nmd2p, and Upf3p Regulate the Decapping and Exonucleolytic Degradation of both Nonsense-Containing mRNAs and Wild-Type mRNAs. Molecular and Cellular Biology, 2001, 21, 1515-1530.	2.3	90
20	Absence of Dbp2p Alters Both Nonsense-Mediated mRNA Decay and rRNA Processing. Molecular and Cellular Biology, 2001, 21, 7366-7379.	2.3	86
21	Association of yeast Upf1p with direct substrates of the NMD pathway. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20872-20877.	7.1	82
22	YRA1 Autoregulation Requires Nuclear Export and Cytoplasmic Edc3p-Mediated Degradation of Its Pre-mRNA. Molecular Cell, 2007, 25, 559-573.	9.7	79
23	Nonsense-Containing mRNAs That Accumulate in the Absence of a Functional Nonsense-Mediated mRNA Decay Pathway Are Destabilized Rapidly upon Its Restitution. Molecular and Cellular Biology, 2003, 23, 842-851.	2.3	65
24	Targeting of Hematologic Malignancies with PTC299, A Novel Potent Inhibitor of Dihydroorotate Dehydrogenase with Favorable Pharmaceutical Properties. Molecular Cancer Therapeutics, 2019, 18, 3-16.	4.1	65
25	Toeprint analysis of the positioning of translation apparatus components at initiation and termination codons of fungal mRNAs. Methods, 2002, 26, 105-114.	3.8	63
26	Linking mRNA Turnover and Translation: Assessing the Polyribosomal Association of mRNA Decay Factors and Degradative Intermediates. Methods, 1999, 17, 28-37.	3.8	58
27	RNA decay modulates gene expression and controls its fidelity. Wiley Interdisciplinary Reviews RNA, 2010, 1, 351-361.	6.4	57
28	The DHODH inhibitor PTC299 arrests SARS-CoV-2 replication and suppresses induction of inflammatory cytokines. Virus Research, 2021, 292, 198246.	2.2	53
29	Temperature-Sensitive Mutations in the Saccharomyces cerevisiae MRT4, GRC5, SLA2 and THS1 Genes Result in Defects in mRNA Turnover. Genetics, 1999, 153, 35-47.	2.9	53
30	NMD: At the crossroads between translation termination and ribosome recycling. Biochimie, 2015, 114, 2-9.	2.6	52
31	Nonsense-mediated mRNA decay maintains translational fidelity by limiting magnesium uptake. Genes and Development, 2010, 24, 1491-1495.	5.9	47
32	Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain. Rna, 2015, 21, 1633-1647.	3.5	47
33	Translational competence of ribosomes released from a premature termination codon is modulated by NMD factors. Rna, 2010, 16, 1832-1847.	3.5	42
34	NMD monitors translational fidelity 24/7. Current Genetics, 2017, 63, 1007-1010.	1.7	40
35	General decapping activators target different subsets of inefficiently translated mRNAs. ELife, 2018, 7, .	6.0	40
36	Depth of Proteome Issues. Molecular and Cellular Proteomics, 2004, 3, 625-659.	3.8	38

3

#	Article	IF	CITATIONS
37	The Use of Fungal In Vitro Systems for Studying Translational Regulation. Methods in Enzymology, 2007, 429, 203-225.	1.0	36
38	Nonsense suppression activity of PTC124 (ataluren). Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E64; author reply E65.	7.1	36
39	Testing the faux-UTR model for NMD: Analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie, 2012, 94, 1560-1571.	2.6	36
40	Yeast Upf1 CH domain interacts with Rps26 of the 40S ribosomal subunit. Rna, 2013, 19, 1105-1115.	3.5	33
41	Overexpression of truncated Nmd3p inhibits protein synthesis in yeast. Rna, 1999, 5, 1055-1070.	3.5	30
42	Conserved mRNA-granule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo. PLoS Genetics, 2018, 14, e1007806.	3.5	29
43	New <i>in Vitro</i> Assay Measuring Direct Interaction of Nonsense Suppressors with the Eukaryotic Protein Synthesis Machinery. ACS Medicinal Chemistry Letters, 2018, 9, 1285-1291.	2.8	28
44	Sequence elements that affect mRNA translational activity in developingDictyostelium cells. Genesis, 1991, 12, 98-103.	2.1	27
45	Yeast Edc3 Targets <i>RPS28B</i> mRNA for Decapping by Binding to a 3′ Untranslated Region Decay-Inducing Regulatory Element. Molecular and Cellular Biology, 2014, 34, 1438-1451.	2.3	26
46	Poly(A)-Binding Protein Regulates the Efficiency of Translation Termination. Cell Reports, 2020, 33, 108399.	6.4	25
47	Regulation of mRNA Decay. Molecular Cell, 2004, 15, 1-2.	9.7	22
48	Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae. PLoS Genetics, 2021, 17, e1009538.	3.5	19
49	Intra- and Intermolecular Regulatory Interactions in Upf1, the RNA Helicase Central to Nonsense-Mediated mRNA Decay in Yeast. Molecular and Cellular Biology, 2013, 33, 4672-4684.	2.3	17
50	A Highly Conserved Region Essential for NMD in the Upf2 N-Terminal Domain. Journal of Molecular Biology, 2014, 426, 3689-3702.	4.2	16
51	Targeting post-transcriptional control for drug discovery. RNA Biology, 2009, 6, 329-334.	3.1	14
52	Dcp2 C-terminal cis-binding elements control selective targeting of the decapping enzyme by forming distinct decapping complexes. ELife, 0, 11, .	6.0	12
53	Post-transcriptional regulation of ribosomal protein gene expression during development inDictyostelium discoideum. Genesis, 1988, 9, 421-434.	2.1	9
54	The RNA exosome affects iron response and sensitivity to oxidative stress. Rna, 2014, 20, 1057-1067.	3.5	9

#	Article	IF	CITATIONS
55	mRNA Stability and Polysome Loss in Hibernating Arctic Ground Squirrels (Spermophilus parryii). Molecular and Cellular Biology, 2000, 20, 6374-6379.	2.3	7
56	Selective profiling of ribosomes associated with yeast Upf proteins. Methods, 2019, 155, 58-67.	3.8	6
57	A Genetic Approach to Mapping Coding Region Determinants of mRNA Instability in Yeast. , 1997, , 149-161.		2
58	High-Resolution Profiling of NMD Targets in Yeast. Methods in Enzymology, 2018, 612, 147-181.	1.0	1
59	Methods to our madness. Rna, 2015, 21, 529-530.	3.5	0
60	The moment when translational control had a theory of everything. Nature Reviews Molecular Cell Biology, 2017, 18, 344-344.	37.0	0